7 research outputs found

    Cadherin-Mediated Differential Cell Adhesion Controls Slow Muscle Cell Migration in the Developing Zebrafish Myotome

    Get PDF
    AbstractSlow-twitch muscle fibers of the zebrafish myotome undergo a unique set of morphogenetic cell movements. During embryogenesis, slow-twitch muscle derives from the adaxial cells, a layer of paraxial mesoderm that differentiates medially within the myotome, immediately adjacent to the notochord. Subsequently, slow-twitch muscle cells migrate through the entire myotome, coming to lie at its most lateral surface. Here we examine the cellular and molecular basis for slow-twitch muscle cell migration. We show that slow-twitch muscle cell morphogenesis is marked by behaviors typical of cells influenced by differential cell adhesion. Dynamic and reciprocal waves of N-cadherin and M-cadherin expression within the myotome, which correlate precisely with cell migration, generate differential adhesive environments that drive slow-twitch muscle cell migration through the myotome. Removing or altering the expression of either protein within the myotome perturbs migration. These results provide a definitive example of homophilic cell adhesion shaping cellular behavior during vertebrate development

    SBE6, a novel long-range enhancer involved in driving Sonic Hedgehog expression in neural progenitor cells

    Get PDF
    The expression of genes with key roles in development is under very tight spatial and temporal control, mediated by enhancers. A classic example of this is the sonic hedgehog gene (<i>Shh</i>) that plays a pivotal role in the proliferation, differentiation and survival of neural progenitor cells both <i>in vivo</i> and <i>in vitro. Shh</i> expression in the brain is tightly controlled by several known enhancers that have been identified through genetic, genomic and functional assays. Using chromatin profiling during the differentiation of embryonic stem cells to neural progenitor cells, here we report the identification of a novel long-range enhancer for Shh-Shh-brain-enhancer-6 (SBE6) that is located 100 kb upstream of <i>Shh</i> and that is required for the proper induction of <i>Shh</i> expression during this differentiation programme. This element is capable of driving expression in the vertebrate brain. Our study illustrates how a chromatin-focused approach, coupled to <i>in vivo</i> testing, can be used to identify new cell-type specific <i>cis</i>-regulatory elements and points to yet further complexity in the control of <i>Shh</i> expression during embryonic brain development

    Robust genetic analysis of the X-linked anophthalmic (Ie) mouse

    Get PDF
    Anophthalmia (missing eye) describes a failure of early embryonic ocular development. Mutations in a relatively small set of genes account for 75% of bilateral anophthalmia cases, yet 25% of families currently are left without a molecular diagnosis. Here, we report our experimental work that aimed to uncover the developmental and genetic basis of the anophthalmia characterising the X-linked Ie (eye-ear reduction) X-ray-induced allele in mouse that was first identified in 1947. Histological analysis of the embryonic phenotype showed failure of normal eye development after the optic vesicle stage with particularly severe malformation of the ventral retina. Linkage analysis mapped this mutation to a ~6 Mb region on the X chromosome. Short- and long-read whole-genome sequencing (WGS) of affected and unaffected male littermates confirmed the Ie linkage but identified no plausible causative variants or structural rearrangements. These analyses did reduce the critical candidate interval and revealed evidence of multiple variants within the ancestral DNA, although none were found that altered coding sequences or that were unique to Ie. To investigate early embryonic events at a genetic level, we then generated mouse ES cells derived from male Ie embryos and wild type littermates. RNA-seq and accessible chromatin sequencing (ATAC-seq) data generated from cultured optic vesicle organoids did not reveal any large differences in gene expression or accessibility of putative cis-regulatory elements between Ie and wild type. However, an unbiased TF-footprinting analysis of accessible chromatin regions did provide evidence of a genome-wide reduction in binding of transcription factors associated with ventral eye development in Ie, and evidence of an increase in binding of the Zic-family of transcription factors, including Zic3, which is located within the Ie-refined critical interval. We conclude that the refined Ie critical region at chrX: 56,145,000&ndash;58,385,000 contains multiple genetic variants that may be linked to altered cis regulation but does not contain a convincing causative mutation. Changes in the binding of key transcription factors to chromatin causing altered gene expression during development, possibly through a subtle mis-regulation of Zic3, presents a plausible cause for the anophthalmia phenotype observed in Ie, but further work is required to determine the precise causative allele and its genetic mechanism

    PRL3-DDX21 transcriptional control of endolysosomal genes restricts melanocyte stem cell differentiation

    Get PDF
    Melanocytes, replenished throughout life by melanocyte stem cells (MSCs), play a critical role in pigmentation and melanoma. Here, we reveal a function for the metastasis-associated phosphatase of regenerating liver 3 (PRL3) in MSC regeneration. We show that PRL3 binds to the RNA helicase DDX21, thereby restricting productive transcription by RNAPII at master transcription factor (MITF)-regulated endolysosomal vesicle genes. In zebrafish, this mechanism controls premature melanoblast expansion and differentiation from MSCs. In melanoma patients, restricted transcription of this endolysosomal vesicle pathway is a hallmark of PRL3-high melanomas. Our work presents the conceptual advance that PRL3-mediated control of transcriptional elongation is a differentiation checkpoint mechanism for activated MSCs and has clinical relevance for the activity of PRL3 in regenerating tissue and cancer

    Rapid Improvement after Starting Elexacaftor–Tezacaftor–Ivacaftor in Patients with Cystic Fibrosis and Advanced Pulmonary Disease

    No full text
    International audienceRationale: Elexacaftor-tezacaftor-ivacaftor is a CFTR (cystic fibrosis [CF] transmembrane conductance regulator) modulator combination, developed for patients with CF with at least one Phe508del mutation. Objectives: To evaluate the effects of elexacaftor-tezacaftor- ivacaftor in patients with CF and advanced respiratory disease. Methods: A prospective observational study, including all patients aged â©Ÿ12 years and with a percent-predicted FEV1 (ppFEV1) <40 who initiated elexacaftor-tezacaftor-ivacaftor from December 2019 to August 2020 in France was conducted. Clinical characteristics were collected at initiation and at 1 and 3 months. Safety and effectiveness were evaluated by September 2020. National-level transplantation and mortality figures for 2020 were obtained from the French CF and transplant centers and registries. Measurements and Main Results: Elexacaftor-tezacaftor- ivacaftor was initiated in 245 patients with a median (interquartile range) ppFEV1 = 29 (24-34). The mean (95% confidence interval) absolute increase in the ppFEV1 was +15.1 (+13.8 to +16.4; P < 0.0001), and the mean (95% confidence interval) in weight was +4.2 kg (+3.9 to +4.6; P < 0.0001). The number of patients requiring long-term oxygen, noninvasive ventilation, and/or enteral tube feeding decreased by 50%, 30%, and 50%, respectively (P < 0.01). Although 16 patients were on the transplant waiting list and 37 were undergoing transplantation evaluation at treatment initiation, only 2 received a transplant, and 1 died. By September 2020, only five patients were still on the transplantation path. Compared with the previous 2 years, a twofold decrease in the number of lung transplantations in patients with CF was observed in 2020, whereas the number of deaths without transplantation remained stable. Conclusions: In patients with advanced disease, elexacaftor-tezacaftor-ivacaftor is associated with rapid clinical improvement, often leading to the indication for lung transplantation being suspended
    corecore