14 research outputs found

    Impact of Deficit Irrigation (DI) and Root-Zone Drying Irrigation Technique (PRD) under Different Nitrogen Rates on Radiation Use Efficiency for Potato (Solanum Tuberosum L.) in Semi-arid Conditions (II)

    Full text link
    The study was carried out at the Technical Center of Potato and Artichoke CTPTA located in the lower valley of Medjerda river of Tunisia during the season of 2017. The purpose was to estimate the impact of deficit irrigation (DI) and the root-zone drying irrigation technique (PRD) under different nitrogen rates on photo synthetically active radiation absorbed and radiation use efficiency for Potato (Solanum Tuberosum L. VS. Spunta). Three water treatments (T1= 100% ETC, T2 = DI = 75% ETC and T3 = PRD50) and three nitrogen rates (F1 = N150: 150 kg N ha-1, F2 = N75: 75kg N ha-1, F3 = N0: 0kg N ha-1) were applied since the tuber initiation (55 days after planting) to maturity (100 days after planting). The deficit irrigation T2 has no effect on PARabs. Besides, the PRD50 has led to a reduction in PARabs. This decrease compare to T1 was equal to (8.9; 9.9 and 7.9%) respectively for the three treatments (F1; F2 and F3). The nitrogen deficit affects negatively the PARabs. An improvement of 13.2%, 11.2% and 12.2% of the F1 compared to the F3, respectively for the three water treatments (T1, T2 and T3). The T2 has no effect on RUE TDM. Conversely, the PRD50 has led to a reduction in RUE TDM. This decline referee against T1 was equal to (12.7; 17.4 and 21.5%) respectively for the three treatments (F1; F2 and F3). For RUEGY statistical analysis showed significant (P < 0.05) difference between the three irrigation treatments (T0, T1 and T2) for the three nitrogen treatments (F1; F2 and F3). The T2 and the PRD50 has led to a reduction in RUE GY. This decrease judge against T1 respectively for the two treatments (F2 and F3) was equal to (14.9 and 21.5%) and (19.6 and 31.2%)

    Effect of Deficit Irrigation and Root-Zone Drying Irrigation Technique under Different Nitrogen Rates on Water Use Efficiency for Potato (Solanum Tuberosum L.) in Semi-arid Conditions (I)

    Full text link
    An investigation was carried out at the Technical Center of Potato and Artichoke CTPTA in the region of Saida, located in the lower valley of Medjerda river during the season of 2017. The objective was to evaluate the effects of deficit irrigation (DI) and the root-zone drying irrigation technique (PRD) under different nitrogen rates on total dry matter production (TDM), water consumption (WC) and water use efficiency of potato (Solanum Tuberosum L. VS. Spunta). Three water treatments (T1 = FI = 100% ETC, T2 = DI = 75% ETC and T3 = PRD50) and three nitrogen rates (F1 = N150: 150 kg N ha-1, F2 = N75: 75kg N ha-1, F3 = N0: 0kg N ha-1) were applied since the tuber initiation (55 days after planting) to maturity (100 days after planting). The results showed that the water regime affected negatively the total dry matter accumulation. A decline of 7 and 18.6% was registered in the two treatments T2 and T3 compared to the control T1. The WC decreased during water restriction respectively by 16; 33 and 29% for the T2 and T3 (PRD50 left) and T3 (PRD50 right) compared to T1. For the three nitrogen treatments (F1, F2 and F3) the water restriction has increased the WUE. The best values was recorded in the treatment T2 and then in the treatment T3 from where this increase compared to T1 was equal to (22.6% and 12.9%), (24.1% and 12, 4%) and (21.9% and 15.3%) respectively

    Population pharmacokinetic modelling and evaluation of different dosage regimens for darunavir and ritonavir in HIV-infected individuals.

    Get PDF
    OBJECTIVES: Darunavir is a protease inhibitor that is administered with low-dose ritonavir to enhance its bioavailability. It is prescribed at standard dosage regimens of 600/100 mg twice daily in treatment-experienced patients and 800/100 mg once daily in naive patients. A population pharmacokinetic approach was used to characterize the pharmacokinetics of both drugs and their interaction in a cohort of unselected patients and to compare darunavir exposure expected under alternative dosage regimens. METHODS: The study population included 105 HIV-infected individuals who provided darunavir and ritonavir plasma concentrations. Firstly, a population pharmacokinetic analysis for darunavir and ritonavir was conducted, with inclusion of patients' demographic, clinical and genetic characteristics as potential covariates (NONMEM(®)). Then, the interaction between darunavir and ritonavir was studied while incorporating levels of both drugs into different inhibitory models. Finally, model-based simulations were performed to compare trough concentrations (Cmin) between the recommended dosage regimen and alternative combinations of darunavir and ritonavir. RESULTS: A one-compartment model with first-order absorption adequately characterized darunavir and ritonavir pharmacokinetics. The between-subject variability in both compounds was important [coefficient of variation (CV%) 34% and 47% for darunavir and ritonavir clearance, respectively]. Lopinavir and ritonavir exposure (AUC) affected darunavir clearance, while body weight and darunavir AUC influenced ritonavir elimination. None of the tested genetic variants showed any influence on darunavir or ritonavir pharmacokinetics. The simulations predicted darunavir Cmin much higher than the IC50 thresholds for wild-type and protease inhibitor-resistant HIV-1 strains (55 and 550 ng/mL, respectively) under standard dosing in >98% of experienced and naive patients. Alternative regimens of darunavir/ritonavir 1200/100 or 1200/200 mg once daily also had predicted adequate Cmin (>550 ng/mL) in 84% and 93% of patients, respectively. Reduction of darunavir/ritonavir dosage to 600/50 mg twice daily led to a 23% reduction in average Cmin, still with only 3.8% of patients having concentrations below the IC50 for resistant strains. CONCLUSIONS: The important variability in darunavir and ritonavir pharmacokinetics is poorly explained by clinical covariates and genetic influences. In experienced patients, treatment simplification strategies guided by drug level measurements and adherence monitoring could be proposed

    Population pharmacokinetic modelling and evaluation of different dosage regimens for darunavir and ritonavir in HIV-infected individuals

    Get PDF
    Objectives Darunavir is a protease inhibitor that is administered with low-dose ritonavir to enhance its bioavailability. It is prescribed at standard dosage regimens of 600/100 mg twice daily in treatment-experienced patients and 800/100 mg once daily in naive patients. A population pharmacokinetic approach was used to characterize the pharmacokinetics of both drugs and their interaction in a cohort of unselected patients and to compare darunavir exposure expected under alternative dosage regimens. Methods The study population included 105 HIV-infected individuals who provided darunavir and ritonavir plasma concentrations. Firstly, a population pharmacokinetic analysis for darunavir and ritonavir was conducted, with inclusion of patients' demographic, clinical and genetic characteristics as potential covariates (NONMEM®). Then, the interaction between darunavir and ritonavir was studied while incorporating levels of both drugs into different inhibitory models. Finally, model-based simulations were performed to compare trough concentrations (Cmin) between the recommended dosage regimen and alternative combinations of darunavir and ritonavir. Results A one-compartment model with first-order absorption adequately characterized darunavir and ritonavir pharmacokinetics. The between-subject variability in both compounds was important [coefficient of variation (CV%) 34% and 47% for darunavir and ritonavir clearance, respectively]. Lopinavir and ritonavir exposure (AUC) affected darunavir clearance, while body weight and darunavir AUC influenced ritonavir elimination. None of the tested genetic variants showed any influence on darunavir or ritonavir pharmacokinetics. The simulations predicted darunavir Cmin much higher than the IC50 thresholds for wild-type and protease inhibitor-resistant HIV-1 strains (55 and 550 ng/mL, respectively) under standard dosing in >98% of experienced and naive patients. Alternative regimens of darunavir/ritonavir 1200/100 or 1200/200 mg once daily also had predicted adequate Cmin (>550 ng/mL) in 84% and 93% of patients, respectively. Reduction of darunavir/ritonavir dosage to 600/50 mg twice daily led to a 23% reduction in average Cmin, still with only 3.8% of patients having concentrations below the IC50 for resistant strains. Conclusions The important variability in darunavir and ritonavir pharmacokinetics is poorly explained by clinical covariates and genetic influences. In experienced patients, treatment simplification strategies guided by drug level measurements and adherence monitoring could be propose

    Perbandingan Akurasi Metode Neural Network dengan Algoritma Fuzzy Logic dalam Prakiraan Cuaca

    No full text
    Seiring dengan terjadinya perubahan cuaca dan iklim di berbagai daerah, prediksi cuaca memiliki peranan sangat penting dalam berbagai bidang, baik itu transportasi hingga sektor pertanian. Prediksi cuaca yang tepat dan akurat dapat memberikan dampak yang baik dalam mencegah maupun menanggulangi bencana yang mungkin terjadi akibat cuaca buruk, seperti kecelakaan transportasi karena hujan lebat. Dalam penleitian ini akan dilakukan perbandingan akurasi dalam pengembangan sistem informasi prakiraan cuaca dengan menggunakan metode neural network dan algoritma fuzzy logic.adapun hasil penelitian ini menunjukan bahwa metode Neural Network dapat memberikan hasil dengan nilai akurasi yang lebih besar dibandingkan dengan hasil menggunakan logika Fuzzy. Hal ini menunjukan bahwa Neural Network dapat melakukan prediksi lebih baik jika dibandingkan dengan algoritma Fuzzy

    Supramolecular Ruthenium-Alkynyl Multicomponent Architectures: Engineering, Photophysical Properties, and Responsiveness to Nitroaromatics

    No full text
    International audienceA series of H-bonded supramolecular architectures were built from monofunctional M-C≡C-R and bifunctional R-C≡C-M-C≡C-R trans-alkynylbis(1,2-bis(diphenylphosphino)ethane)ruthenium(II) complexes and π-conjugated modules containing 2,5-dialkoxy-p-phenylene. Incorporation on each partner of a cyanuric end and of the complementary Hamilton receptor provided the necessary means to keep the constituents together via strong hydrogen bonding. Characterization of all architectures has been performed on the basis of NMR and photophysical methods. In particular, the formation of a Hamilton receptor/cyanuric acid complex has been exemplified by an X-ray single-crystal structure determination. Both self-assembly and accurate modification of the complementary blocks were ensured in such a way that the resulting materials maintain the responsiveness of the electron-rich 2,5-dialkoxy-p-phenylene spacers toward nitroaromatics
    corecore