20 research outputs found

    Influence of Aspilia pluriseta Schweinf (Asteraceae) on the healing of dermal excision wounds (mouse model) and skin sensitization activity (Guinea pig model)

    Get PDF
    Background: The skin is highly predisposed to injury because of its direct contact with the environment. The aim of treating of wounds is to both hasten healing, and to minimise the occurrence of perturbations of the healing process. Many plants traditionally used to treat wounds have been proven to support the healing process using scientific models. Aspilia pluriseta has been used by a number of communities in East and Southern Africa to treat wounds. Objectives: This study aimed at testing ethnomedical claims of wound healing activity of A. pluriseta using preclinical models. Methods: Aerial parts of the plant were ground and incorporated into an ointment base (10% and 20% w/w) to evaluate the influence of the plant on the healing of acute excision wounds in mice compared to Silverex Cream® and Simple Ointment (B.P.). The 20% ointment was tested for skin sensitization in guinea pigs. Results: The effects of the plant-based ointments on wound contraction and gross epithelialisation time were less than significantly different from the controls (p≥0.05), but histopathologic examination revealed remarkable epithelialisation and collagen deposition in the wounds treated with the these ointments. The 20% A. pluriseta-based ointment induced moderate allergic contact dermatitis. Key words: Aspilia pluriseta, wound healing, skin sensitization, excision wound mode

    Ethnodiagnostic Skills of the Digo Community for Malaria: A Lead to Traditional Bioprospecting

    Get PDF
    Malaria is a major public health problem that is presently complicated by the development of resistance by Plasmodium falciparum to the mainstay drugs. Thus, new drugs with unique structures and mechanism of action are required to treat drug-resistant strains of malaria. Historically, compounds containing a novel structure from natural origin represent a major source for the discovery and development of new drugs for several diseases. This paper presents ethnophytotherapeutic remedies, ethnodiagnostic skills, and related traditional knowledge utilized by the Digo community of the Kenyan Coast to diagnose malaria as a lead to traditional bioprospecting. The current study was carried out in three Digo villages of Diani sub-location between May 2009 and December 2009. Data was collected using semi-structured interviews, and open and close-ended questionnaires. A total of 60 respondents (34 men and 26 women) provided the targeted information. The results show that the indigenous knowledge of Digo community on malaria encompasses not only the symptoms of malaria but also the factors that are responsible for causing malaria, attributes favoring the breeding of mosquitoes and practices employed to guard against mosquito bites or to protect households against malaria. This knowledge is closely in harmony with scientific approaches to the treatment and control of the disease. The Digo community uses 60 medicinal plants distributed in 52 genera and 27 families to treat malaria. The most frequently mentioned symptoms were fever, joint pains, and vomiting while the most frequently mentioned practices employed to guard against mosquito bites and/or to protect households against malaria was burning of herbal plants such as Ocimum suave and ingestion of herbal decoctions and concoctions. The Digo community has abundant ethnodiagnostic skills for malaria which forms the basis of their traditional bioprospecting techniques

    Maximizing Laboratory Production of Aflatoxins and Fumonisins for Use in Experimental Animal Feeds

    Get PDF
    Warm and humid climatic conditions coupled with poor agricultural practices in sub-Saharan Africa favor the contamination of food and feed by Aspergillus flavus and Fusarium verticillioides fungi, which subsequently may produce aflatoxins (AFs) and fumonisins (FBs), respectively. The growth of fungi and the production of mycotoxins are influenced by physical (temperature, pH, water activity, light and aeration), nutritional, and biological factors. This study aimed at optimizing the conditions for the laboratory production of large quantities of AFs and FBs for use in the animal experiments. A. flavus and F. verticillioides strains, previously isolated from maize in Kenya, were used. Levels of AFB1 and total FBs (FB1, FB2, and FB3) in different growth substrates were screened using ELISA methods. Maize kernels inoculated with three different strains of A. flavus simultaneously and incubated at 29 degrees C for 21 days had the highest AFB1 level of 12,550 +/- 3397 mu g/kg of substrate. The highest level of total FBs (386,533 +/- 153,302 mu g/kg of substrate) was detected in cracked maize inoculated with three different strains of F. verticillioides and incubated for 21 days at temperatures of 22-25 degrees C in a growth chamber fitted with yellow light. These two methods are recommended for the mass production of AFB1 and FBs for animal feeding trials

    Mycotoxins in Poultry Feed and Feed Ingredients from Sub-Saharan Africa and Their Impact on the Production of Broiler and Layer Chickens: A Review

    Get PDF
    The poultry industry in sub-Saharan Africa (SSA) is faced with feed insecurity, associated with high cost of feeds, and feed safety, associated with locally produced feeds often contaminated with mycotoxins. Mycotoxins, including aflatoxins (AFs), fumonisins (FBs), trichothecenes, and zearalenone (ZEN), are common contaminants of poultry feeds and feed ingredients from SSA. These mycotoxins cause deleterious effects on the health and productivity of chickens and can also be present in poultry food products, thereby posing a health hazard to human consumers of these products. This review summarizes studies of major mycotoxins in poultry feeds, feed ingredients, and poultry food products from SSA as well as aflatoxicosis outbreaks. Additionally reviewed are the worldwide regulation of mycotoxins in poultry feeds, the impact of major mycotoxins in the production of chickens, and the postharvest use of mycotoxin detoxifiers. In most studies, AFs are most commonly quantified, and levels above the European Union regulatory limits of 20 mu g/kg are reported. Trichothecenes, FBs, ZEN, and OTA are also reported but are less frequently analyzed. Co-occurrences of mycotoxins, especially AFs and FBs, are reported in some studies. The effects of AFs on chickens' health and productivity, carryover to their products, as well as use of mycotoxin binders are reported in few studies conducted in SSA. More research should therefore be conducted in SSA to evaluate occurrences, toxicological effects, and mitigation strategies to prevent the toxic effects of mycotoxins

    Efficacy of fumonisin esterase in piglets as animal model for fumonisin detoxification in humans : pilot study comparing intraoral to intragastric administration

    No full text
    Fumonisins, a group of highly prevalent and toxic mycotoxins, are suspected to be causal agents of several diseases in animals and humans. In the animal feed industry, fumonisin esterase is used as feed additive to prevent mycotoxicosis caused by fumonisins. In humans, a popular dosage form for dietary supplements, with high patient acceptance for oral intake, is capsule ingestion. Thus, fumonisin esterase provided in a capsule could be an effective strategy against fumonisin intoxication in humans. To determine the efficacy of fumonisin esterase through capsule ingestion, two modes of application were compared using piglets in a small-scale preliminary study. The enzyme was administered intraorally (in-feed analogue) or intragastrically (capsule analogue), in combination with fumonisin B1 (FB1). Biomarkers for FB1 exposure; namely FB1, hydrolysed FB1 (HFB1) and partially hydrolysed forms (pHFB1a and pHFB1b), were measured both in serum and faeces using a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, and toxicokinetic parameters were calculated. Additionally, the serum sphinganine/sphingosine (Sa/So) ratio, a biomarker of effect, was determined using LC-MS/MS. A significantly higher Sa/So ratio was shown in the placebo group compared to both esterase treatments, demonstrating the efficacy of the esterase. Moreover, a significant decrease in serum FB1 area under the concentration-time curve (AUC) and an increase of faecal HFB1 AUC were observed after intraoral esterase administration. However, these effects were not observed with statistical significance after intragastric esterase administration with the current sample size

    A 56-Day Oral Toxicity Study of the Aqueous Extract of Rapanea melanophloeos (L.) Mez in Rats

    No full text
    Rapanea melanophloeos is a tropical tree that is extensively utilized in African traditional medicine to treat helminthiases, tuberculosis, and heart-water. As with many other medicinal plants, there is insufficient information regarding the safety of therapeutic R. melanophloeos extracts. An aqueous extract of R. melanophloeos stem bark was administered to Sprague Dawley rats at doses of 100 mg/kg, 300 mg/kg, and 1000 mg/kg for 56 days to characterize its potential toxicity after prolonged dosing. Blood samples were obtained fortnightly for serum chemistry and hematology, while organs were collected at the end of the study. The extract caused an increase in organ weight indices of the kidneys and testis at 300 mg/kg and 1000 mg/kg. Hematological and biochemical examination revealed a drop in leukocyte counts and the hematocrit at 1000 mg/kg dose level, while there was a general but nondose-related elevation in alkaline phosphatase activity. There were time-associated variations in the hematological and clinical chemistry parameters at days 28, 42, and 56 in all dose levels, but most values remained within physiological limits. No pathological lesions were evident at histopathology after treatment with the extract. Our data shows that the aqueous extract of R. melanophloeos is not likely to be toxic at the doses tested and provides support to its medicinal use

    A Review of the Impact of Mycotoxins on Dairy Cattle Health : Challenges for Food Safety and Dairy Production in Sub-Saharan Africa

    Get PDF
    Mycotoxins are secondary metabolites of fungi that contaminate food and feed and have a significant negative impact on human and animal health and productivity. The tropical condition in Sub-Saharan Africa (SSA) together with poor storage of feed promotes fungal growth and subsequent mycotoxin production. Aflatoxins (AF) produced by Aspergillus species, fumonisins (FUM), zearalenone (ZEN), T-2 toxin (T-2), and deoxynivalenol (DON) produced by Fusarium species, and ochratoxin A (OTA) produced by Penicillium and Aspergillus species are well-known mycotoxins of agricultural importance. Consumption of feed contaminated with these toxins may cause mycotoxicoses in animals, characterized by a range of clinical signs depending on the toxin, and losses in the animal industry. In SSA, contamination of dairy feed with mycotoxins has been frequently reported, which poses a serious constraint to animal health and productivity, and is also a hazard to human health since some mycotoxins and their metabolites are excreted in milk, especially aflatoxin M1. This review describes the major mycotoxins, their occurrence, and impact in dairy cattle diets in SSA highlighting the problems related to animal health, productivity, and food safety and the up-to-date post-harvest mitigation strategies for the prevention and reduction of contamination of dairy feed

    Co-Occurrence and Levels of Mycotoxins in Fish Feeds in Kenya

    Get PDF
    This study determined the presence, levels and co-occurrence of mycotoxins in fish feeds in Kenya. Seventy-eight fish feeds and ingredients were sampled from fish farms and fish feed manufacturing plants and analysed for 40 mycotoxins using high-performance liquid chromatography-high resolution mass spectrometry. Twenty-nine (73%) mycotoxins were identified with 76 (97%) samples testing positive for mycotoxins presence. Mycotoxins with the highest prevalences were enniatin B (91%), deoxynivalenol (76%) and fumonisin B1 (54%) while those with the highest maximum levels were sterigmatocystin (<30.5–3517.1 µg/kg); moniliformin (<218.9–2583.4 µg/kg) and ergotamine (<29.3–1895.6 µg/kg). Mycotoxin co-occurrence was observed in 68 (87%) samples. Correlations were observed between the fumonisins; enniatins B and zearalenone and its metabolites. Fish dietary exposure estimates ranged between <0.16 and 43.38 µg/kg body weight per day. This study shows evidence of mycotoxin presence and co-occurrence in fish feeds and feed ingredients in Kenya. Fish exposure to these levels of mycotoxins over a long period of time may lead to adverse health effects due to their possible additive, synergistic or antagonist toxic effects. Measures to reduce fish feed mycotoxin contamination should be taken to avoid mycotoxicosis in fish and subsequently in humans and animals through residue

    Maximizing Laboratory Production of Aflatoxins and Fumonisins for Use in Experimental Animal Feeds

    Full text link
    peer reviewedWarm and humid climatic conditions coupled with poor agricultural practices in sub-Saharan Africa favor the contamination of food and feed by Aspergillus flavus and Fusarium verticillioides fungi, which subsequently may produce aflatoxins (AFs) and fumonisins (FBs), respectively. The growth of fungi and the production of mycotoxins are influenced by physical (temperature, pH, water activity, light and aeration), nutritional, and biological factors. This study aimed at optimizing the conditions for the laboratory production of large quantities of AFs and FBs for use in the animal experiments. A. flavus and F. verticillioides strains, previously isolated from maize in Kenya, were used. Levels of AFB1 and total FBs (FB1, FB2, and FB3) in different growth substrates were screened using ELISA methods. Maize kernels inoculated with three different strains of A. flavus simultaneously and incubated at 29 °C for 21 days had the highest AFB1 level of 12,550 ± 3397 μg/kg of substrate. The highest level of total FBs (386,533 ± 153,302 μg/kg of substrate) was detected in cracked maize inoculated with three different strains of F. verticillioides and incubated for 21 days at temperatures of 22–25 °C in a growth chamber fitted with yellow light. These two methods are recommended for the mass production of AFB1 and FBs for animal feeding trials.ERA-NET LEAP-Agri MycoSafe-South project (number LEAP-Agri-483
    corecore