2,615 research outputs found

    The microstructure and microtexture of zirconium oxide films studied by transmission electron backscatter diffraction and automated crystal orientation mapping with transmission electron microscopy

    Get PDF
    A detailed characterization of nanostructured thin zirconium oxide films formed during aqueous corrosion of a nuclear-grade zirconium alloy (Zircaloy-4) has been carried out by means of two novel, ultra-high-spatial-resolution grain mapping techniques, namely automated crystal orientation mapping in the transmission electron microscope (TEM) and transmission electron backscatter diffraction (t-EBSD). While the former provided excellent spatial resolution with the ability to identify tetragonal ZrO<sub>2</sub> grains as small as ∼5 nm, the superior angular resolution and unambiguous indexing with t-EBSD enabled verification of the TEM observations. Both techniques revealed that in a stress-free condition (TEM foil prepared by focused ion beam milling), the oxide consists mainly of well-oriented columnar monoclinic grains with a high fraction of transformation twin boundaries, which indicates that the transformation from tetragonal to monoclinic ZrO<sub>2</sub> is a continuous process, and that a significant fraction of the columnar grains transformed from stress-stabilized tetragonal grains with (0 0 1) planes parallel to the metal–oxide interface. The TEM analysis also revealed a small fraction of size-stabilized, equiaxed tetragonal grains throughout the oxide. Those grains were found to show significant misalignment from the expected (0 0 1) growth direction, which explains the limited growth of those grains. The observations are discussed in the context of providing new insights into corrosion mechanisms of zirconium alloys, which is of particular importance for improving service life of fuel assemblies used in water-cooled reactors

    Compositional analysis of InAs-GaAs-GaSb heterostructures by low-loss electron energy loss spectroscopy

    Get PDF
    As an alternative to Core-Loss Electron Energy Loss Spectroscopy, Low-Loss EELS is suitable for compositional analysis of complex heterostructures, such as the InAs-GaAs-GaSb system, since in this energy range the edges corresponding to these elements are better defined than in Core-Loss. Furthermore, the analysis of the bulk plasmon peak, which is present in this energy range, also provides information about the composition. In this work, compositional information in an InAs-GaAs-GaSb heterostructure has been obtained from Low-Loss EEL spectra

    Tunable dipolar magnetism in high-spin molecular clusters

    Get PDF
    We report on the Fe17 high-spin molecular cluster and show that this system is an exemplification of nanostructured dipolar magnetism. Each Fe17 molecule, with spin S=35/2 and axial anisotropy as small as D=-0.02K, is the magnetic unit that can be chemically arranged in different packing crystals whilst preserving both spin ground-state and anisotropy. For every configuration, molecular spins are correlated only by dipolar interactions. The ensuing interplay between dipolar energy and anisotropy gives rise to macroscopic behaviors ranging from superparamagnetism to long-range magnetic order at temperatures below 1K.Comment: Replaced with version accepted for publication in Physical Review Letter

    The iridium double perovskite Sr2YIrO6 revisited: A combined structural and specific heat study

    Full text link
    Recently, the iridate double perovskite Sr2_2YIrO6_6 has attracted considerable attention due to the report of unexpected magnetism in this Ir5+^{5+} (5d4^4) material, in which according to the Jeff_{eff} model, a non-magnetic ground state is expected. However, in recent works on polycrystalline samples of the series Ba2x_{2-x}Srx_xYIrO6_6 no indication of magnetic transitions have been found. We present a structural, magnetic and thermodynamic characterization of Sr2_2YIrO6_6 single crystals, with emphasis on the temperature and magnetic field dependence of the specific heat. Here, we demonstrate the clue role of single crystal X-ray diffraction on the structural characterization of the Sr2_2YIrO6_6 double perovskite crystals by reporting the detection of a 2a×2a×1c\sqrt{2}a \times \sqrt{2}a \times 1c supercell, where aa, bb and cc are the unit cell dimensions of the reported monoclinic subcell. In agreement with the expected non-magnetic ground state of Ir5+^{5+} (5d4^4) in Sr2_2YIrO6_6, no magnetic transition is observed down to 430~mK. Moreover, our results suggest that the low temperature anomaly observed in the specific heat is not related to the onset of long-range magnetic order. Instead, it is identified as a Schottky anomaly caused by paramagnetic impurities present in the sample, of the order of n0.5(2)n \sim 0.5(2) \%. These impurities lead to non-negligible spin correlations, which nonetheless, are not associated with long-range magnetic ordering.Comment: 20 pages, 10 figure

    Design, data management, and population baseline characteristics of the PERFORM magnetic resonance imaging project

    Get PDF
    Quantitative information from magnetic resonance imaging (MRI) may substantiate clinical findings and provide additional insight into the mechanism of clinical interventions in therapeutic stroke trials. The PERFORM study is exploring the efficacy of terutroban versus aspirin for secondary prevention in patients with a history of ischemic stroke. We report on the design of an exploratory longitudinal MRI follow-up study that was performed in a subgroup of the PERFORM trial. An international multi-centre longitudinal follow-up MRI study was designed for different MR systems employing safety and efficacy readouts: new T2 lesions, new DWI lesions, whole brain volume change, hippocampal volume change, changes in tissue microstructure as depicted by mean diffusivity and fractional anisotropy, vessel patency on MR angiography, and the presence of and development of new microbleeds. A total of 1,056 patients (men and women ≥55years) were included. The data analysis included 3D reformation, image registration of different contrasts, tissue segmentation, and automated lesion detection. This large international multi-centre study demonstrates how new MRI readouts can be used to provide key information on the evolution of cerebral tissue lesions and within the macrovasculature after atherothrombotic stroke in a large sample of patient

    Self-gravitating domain walls and the thin-wall limit

    Full text link
    We analyse the distributional thin wall limit of self gravitating scalar field configurations representing thick domain wall geometries. We show that thick wall solutions can be generated by appropiate scaling of the thin wall ones, and obtain an exact solution for a domain wall that interpolates between AdS_4 asymptotic vacua and has a well-defined thin wall limit.Solutions representing scalar field configurations obtained via the same scaling but that do not have a thin wall limit are also presented.Comment: 10 pages, revte

    Massive Schwinger model and its confining aspects on curved space-time

    Full text link
    Using a covariant method to regularize the composite operators, we obtain the bosonized action of the massive Schwinger model on a classical curved background. Using the solution of the bosonic effective action, the energy of two static external charges with finite and large distance separation on a static curved space-time is obtained. The confining behavior of this model is also explicitly discussed.Comment: A disscussion about the infrared regularization and also two references are added. Accepted for publication in Phys. Rev. D (2001

    STELAR: An experiment in the electronic distribution of astronomical literature

    Get PDF
    STELAR (Study of Electronic Literature for Astronomical Research) is a Goddard-based project designed to test methods of delivering technical literature in machine readable form. To that end, we have scanned a five year span of the ApJ, ApJ Supp, AJ and PASP, and have obtained abstracts for eight leading academic journals from NASA/STI CASI, which also makes these abstracts available through the NASA RECON system. We have also obtained machine readable versions of some journal volumes from the publishers, although in many instances, the final typeset versions are no longer available. The fundamental data object for the STELAR database is the article, a collection of items associated with a scientific paper - abstract, scanned pages (in a variety of formats), figures, OCR extractions, forward and backward references, errata and versions of the paper in various formats (e.g., TEX, SGML, PostScript, DVI). Articles are uniquely referenced in the database by journal name, volume number and page number. The selection and delivery of articles is accomplished through the WAIS (Wide Area Information Server) client/server models requiring only an Internet connection. Modest modifications to the server code have made it capable of delivering the multiple data types required by STELAR. WAIS is a platform independent and fully open multi-disciplinary delivery system, originally developed by Thinking Machines Corp. and made available free of charge. It is based on the ISO Z39.50 standard communications protocol. WAIS servers run under both UNIX and VMS. WAIS clients run on a wide variety of machines, from UNIX-based Xwindows systems to MS-DOS and macintosh microcomputers. The WAIS system includes full-test indexing and searching of documents, network interface and easy access to a variety of document viewers. ASCII versions of the CASI abstracts have been formatted for display and the full test of the abstracts has been indexed. The entire WAIS database of abstracts is now available for use by the astronomical community. Enhancements of the search and retrieval system are under investigation to include specialized searches (by reference, author or keyword, as opposed to full test searches), improved handling of word stems, improvements in relevancy criteria and other retrieval techniques, such as factor spaces. The STELAR project has been assisted by the full cooperation of the AAS, the ASP, the publishers of the academic journals, librarians from GSFC, NRAO and STScI, the Library of Congress, and the University of North Carolina at Chapel Hill

    Morc1 knockout evokes a depression-like phenotype in mice

    Get PDF
    Morc1 gene has recently been identified by a DNA methylation and genome-wide association study as a candidate gene for major depressive disorder related to early life stress in rodents, primates and humans. So far, no transgenic animal model has been established to validate these findings on a behavioral level. In the present study, we examined the effects of a Morc1 loss of function mutation in female C57BL/6N mice on behavioral correlates of mood disorders like the Forced Swim Test, the Learned Helplessness Paradigm, O-Maze and Dark-Light-Box. We could show that Morc1(-/-) mice display increased depressive-like behavior whereas no behavioral abnormalities regarding locomotor activity or anxiety-like behavior were detectable. CORT plasma levels did not differ significantly between Morc1(-/-) mice and their wildtype littermates, yet - surprisingly - total Bdnf mRNA-levels in the hippocampus were up-regulated in Morc1(-/-) animals. Although further work would be clarifying, Morc1(-/-) mice seem to be a promising epigenetically validated mouse model for depression associated with early life stress

    Circle talks as situated experiential learning: Context, identity, and knowledgeability in \u27learning from reflection\u27

    Get PDF
    This article presents research that used ethnographic and sociolinguistic methods to study ways participants learn through reflection when carried out as a “circle talk.” The data indicate that participants in the event (a) invoked different contextual frames that (b) implicated them in various identity positions, which (c) affected how they could express their knowledge. These features worked together to generate socially shared meanings that enabled participants to jointly achieve conceptualization—the ideational role “reflection” is presumed to play in the experiential learning process. The analysis supports the claim that participants generate new knowledge in reflection, but challenges individualistic and cognitive assumptions regarding how this occurs. The article builds on situated views of experiential learning by showing how knowledge can be understood as socially shared and how learning and identity formation are mutually entailing processes
    corecore