15 research outputs found

    The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description

    Get PDF
    On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2-7 m, while providing data at sub-mm to mm scales. We report on SuperCam's science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data.In France was provided by the Centre National d'Etudes Spatiales (CNES). Human resources were provided in part by the Centre National de la Recherche Scientifique (CNRS) and universities. Funding was provided in the US by NASA's Mars Exploration Program. Some funding of data analyses at Los Alamos National Laboratory (LANL) was provided by laboratory-directed research and development funds

    Histoire de l’éducation populaire, 1815-1945

    No full text
    L'histoire de l’éducation populaire suscite des recherches depuis une trentaine d’annĂ©es mais il n’existe pas de bilan des travaux. Vingt-huit contributions concernant la France, d’autres pays europĂ©ens et le QuĂ©bec mettent l’accent sur le rapport complexe Ă  l’école, la question du genre et la dimension politique de l’éducation populaire. L’action d’individus connus (Édouard Petit) ou mĂ©connus (Maud Pledge), de groupes (les fouriĂ©ristes) est aussi bien Ă©voquĂ©e que celle d’institutions comme les universitĂ©s populaires de province ou la Jeunesse ouvriĂšre chrĂ©tienne. Un intĂ©rĂȘt particulier a Ă©tĂ© portĂ© aux techniques : chanson, lecture populaire, documentation, cinĂ©ma, sans oublier plusieurs chapitres Ă  caractĂšre historiographique. En un volume est dressĂ© un tableau de l’éducation populaire dans sa diversitĂ©, entre 1815 et 1945, date qui marque le dĂ©but de son institutionnalisation.The history of Popular Education (Non Formal Education) has aroused research work for thirty years but yet no review of this work has been published. 28 contributions dealing with France, other European countries and Quebec focus on the complex relationship to school, gender and the political dimension of Popular Education

    The SuperCam infrared spectrometer for the perseverance rover of the Mars2020 mission

    No full text
    International audienceWe present the Infrared spectrometer of SuperCam Instrument Suite that enables the Mars 2020 Perseverance Rover to study remotely the Martian mineralogy within the Jezero crater. The SuperCam IR spectrometer is designed to acquire spectra in the 1.3–2.6 ”m domain at a spectral resolution ranging from 5 to 20 nm. The field-of-view of 1.15 mrad, is coaligned with the boresights of the other remote-sensing techniques provided by SuperCam: laser-induced breakdown spectroscopy, remote time-resolved Raman and luminescence spectroscopies, and visible reflectance spectroscopy, and micro-imaging. The IR spectra can be acquired from the robotic-arm workspace to long-distances, in order to explore the mineralogical diversity of the Jezero crater, guide the Perseverance Rover in its sampling task, and to document the samples’ environment. We present the design, the performance, the radiometric calibration, and the anticipated operations at the surface of Mars

    Safety and tolerability of subcutaneous trastuzumab for the adjuvant treatment of human epidermal growth factor receptor 2-positive early breast cancer: SafeHer phase III study's primary analysis of 2573 patients

    No full text
    © 2017 Elsevier Ltd Aim To assess the safety and tolerability of adjuvant subcutaneous trastuzumab (Herceptin Âź SC, H SC), delivered from an H SC Vial via hand-held syringe (Cohort A) or single-use injection device (Cohort B), with or without chemotherapy, for human epidermal growth factor receptor 2 (HER2)-positive stage I to IIIC early breast cancer (EBC) in the phase III SafeHer study (NCT01566721). Methods Patients received 600 mg fixed-dose H SC every 3 weeks for 18 cycles. The chemotherapy partner was at the investigators' discretion (H SC monotherapy was limited to ≀10% of the population). Data from the first H SC dose until 28 days (plus a 5-day window) after the last dose are presented. Results are descriptive. Results In the overall population, 2282/2573 patients (88.7%) experienced adverse events (AEs). Of the above, 128 (5.0%) patients experienced AEs leading to study drug discontinuation; 596 (23.2%) experienced grade ≄ 3 AEs and 326 (12.7%) experienced serious AEs. Grade ≄ 3 cardiac disorders were reported in 24 patients (0.9%), including congestive heart failure in eight (0.3%). As expected, the AE rates varied according to the timing of chemotherapy in both cohorts, with higher rates in concurrent versus sequential chemotherapy subgroups. In the concurrent chemotherapy subgroup, AEs were more common during the actual period of concurrent chemotherapy compared with the period when patients did not receive concurrent chemotherapy. Conclusion SafeHer confirms the safety and tolerability of the H SC 600 mg fixed dose for 1 year (every 3 weeks for 18 cycles) as adjuvant therapy with concurrent or sequential chemotherapy for HER2-positive EBC. These primary analysis results are consistent with the known safety profile for intravenous H and H SC.Link_to_subscribed_fulltex

    Radiation-induced alteration of apatite on the surface of Mars: first in situ observations with SuperCam Raman onboard Perseverance

    No full text
    International audiencePlanetary exploration relies considerably on mineral characterization to advance our understanding of the solar system, the planets and their evolution. Thus, we must understand past and present processes that can alter materials exposed on the surface, affecting space mission data. Here, we analyze the first dataset monitoring the evolution of a known mineral target in situ on the Martian surface, brought there as a SuperCam calibration target onboard the Perseverance rover. We used Raman spectroscopy to monitor the crystalline state of a synthetic apatite sample over the first 950 Martian days (sols) of the Mars2020 mission. We note significant variations in the Raman spectra acquired on this target, specifically a decrease in the relative contribution of the Raman signal to the total signal. These observations are consistent with the results of a UV‑irradiation test performed in the laboratory under conditions mimicking ambient Martian conditions. We conclude that theobserved evolution reflects an alteration of the material, specifically the creation of electronic defects, due to its exposure to the Martian environment and, in particular, UV irradiation. This ongoing process of alteration of the Martian surface needs to be taken into account for mineralogical space mission data analysis

    The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests

    Get PDF
    The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover Curiosity provides remote compositional information using the first laser-induced breakdown spectrometer (LIBS) on a planetary mission, and provides sample texture and morphology data using a remote micro-imager (RMI). Overall, ChemCam supports MSL with five capabilities: remote classification of rock and soil characteristics; quantitative elemental compositions including light elements like hydrogen and some elements to which LIBS is uniquely sensitive (e.g., Li, Be, Rb, Sr, Ba); remote removal of surface dust and depth profiling through surface coatings; context imaging; and passive spectroscopy over the 240-905 nm range. ChemCam is built in two sections: The mast unit, consisting of a laser, telescope, RMI, and associated electronics, resides on the rover's mast, and is described in a companion paper. ChemCam's body unit, which is mounted in the body of the rover, comprises an optical demultiplexer, three spectrometers, detectors, their coolers, and associated electronics and data handling logic. Additional instrument components include a 6 m optical fiber which transfers the LIBS light from the telescope to the body unit, and a set of onboard calibration targets. ChemCam was integrated and tested at Los Alamos National Laboratory where it also underwent LIBS calibration with 69 geological standards prior to integration with the rover. Post-integration testing used coordinated mast and instrument commands, including LIBS line scans on rock targets during system-level thermal-vacuum tests. In this paper we describe the body unit, optical fiber, and calibration targets, and the assembly, testing, and verification of the instrument prior to launch

    The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests

    Get PDF
    TheSuperCaminstrumentsuiteprovidestheMars2020rover,Perseverance,with a number of versatile remote-sensing techniques that can be used at long distance as well as within the robotic-arm workspace. These include laser-induced breakdown spectroscopy (LIBS), remote time-resolved Raman and luminescence spectroscopies, and visible and in- frared (VISIR; separately referred to as VIS and IR) reflectance spectroscopy. A remote micro-imager (RMI) provides high-resolution color context imaging, and a microphone can be used as a stand-alone tool for environmental studies or to determine physical properties of rocks and soils from shock waves of laser-produced plasmas. SuperCam is built in three parts: The mast unit (MU), consisting of the laser, telescope, RMI, IR spectrometer, and associated electronics, is described in a companion paper. The on-board calibration targets are described in another companion paper. Here we describe SuperCam’s body unit (BU) and testing of the integrated instrument.The BU, mounted inside the rover body, receives light from the MU via a 5.8 m opti- cal fiber. The light is split into three wavelength bands by a demultiplexer, and is routed via fiber bundles to three optical spectrometers, two of which (UV and violet; 245–340 and 385–465 nm) are crossed Czerny-Turner reflection spectrometers, nearly identical to their counterparts on ChemCam. The third is a high-efficiency transmission spectrometer contain- ing an optical intensifier capable of gating exposures to 100 ns or longer, with variable delay times relative to the laser pulse. This spectrometer covers 535–853 nm (105–7070 cm−1 Ra- man shift relative to the 532 nm green laser beam) with 12 cm−1 full-width at half-maximum peak resolution in the Raman fingerprint region. The BU electronics boards interface with the rover and control the instrument, returning data to the rover. Thermal systems maintain a warm temperature during cruise to Mars to avoid contamination on the optics, and cool the detectors during operations on Mars.Results obtained with the integrated instrument demonstrate its capabilities for LIBS, for which a library of 332 standards was developed. Examples of Raman and VISIR spec- troscopy are shown, demonstrating clear mineral identification with both techniques. Lumi- nescence spectra demonstrate the utility of having both spectral and temporal dimensions. Finally, RMI and microphone tests on the rover demonstrate the capabilities of these sub- systems as well
    corecore