361 research outputs found
Determining the Effects of Transcranial Direct Current Stimulation on Tinnitus, Depression, and Anxiety: A Systematic Review
(1) Background: Tinnitus is the awareness of a sound in the absence of an external source. It affects around 10–15% of people, a significant proportion of whom also experience symptoms such as depression or anxiety that negatively affect their quality of life. Transcranial direct current stimulation (tDCS) is a technique involving constant low-intensity direct current delivered via scalp electrodes. It is a potential treatment option for tinnitus, as well as tinnitus-related conditions such as depression and anxiety. This systematic review estimates the effects of tDCS on outcomes relevant to tinnitus. In addition, it sheds light on the relationship between stimulation parameters and the effect of tDCS on these outcomes; (2) Methods: Exhaustive searches of electronic databases were conducted. Randomised controlled trials were included if they reported at least one of the following outcomes: tinnitus symptom severity, anxiety, or depression. Where available, data on quality of life, adverse effects, and neurophysiological changes were also reviewed. GRADE was used to assess the certainty in the estimate; (3) Results: Meta-analyses revealed a statistically significant reduction in tinnitus (moderate certainty) and depression (low certainty)-but not anxiety-following active tDCS compared to sham control. Network meta-analyses revealed potential optimal stimulation parameters; (4) Conclusions: The evidence synthesised in this review suggests tDCS has the potential to reduce symptom severity in tinnitus and depression. It further narrows down the number of potentially optimal stimulation parameters
The auditory evoked-gamma response and its relation with the N1m
This study explored the patterns of oscillatory activity that underpin the N1m auditory evoked response. Evoked gamma activity is a small and relatively rarely-reported component of the auditory evoked response, and the objective of this work was to determine how this component relates to the larger and more prolonged changes in lower frequency bands. An event-related beamformer analysis of MEG data from monaural click stimulation was used to reconstruct volumetric images and virtual electrode time series. Group analysis of localisations showed that activity in the gamma band originated from a source that was more medial than those for activity in the theta-to-beta band, and virtual-electrode analysis showed that the source of the gamma activity could be statistically dissociated from the lower-frequency response. These findings are in accordance with separate functional roles for the activity in each frequency band, and provide evidence that the oscillatory activity that underpins the auditory evoked response may contain important information about the physiological basis of the macroscopic signals recorded by MEG in response to auditory stimulation
Upgrade of the MARI spectrometer at ISIS
The MARI direct geometry time-of-flight neutron spectrometer at ISIS has been upgraded with an m = 3 supermirror guide and new detector electronics. This has resulted in a flux gain of approximate to 6x at lambda = 1.8 angstrom, and improvements on discriminating electrical noise, allowing MARI to continue to deliver a high quality science program well into its fourth decade of life
Measurement of dynamic task related functional networks using MEG
The characterisation of dynamic electrophysiological brain networks, which form and dissolve in order to support ongoing cognitive function, is one of the most important goals in neuroscience. Here, we introduce a method for measuring such networks in the human brain using magnetoencephalography (MEG). Previous network analyses look for brain regions that share a common temporal profile of activity. Here distinctly, we exploit the high spatio-temporal resolution of MEG to measure the temporal evolution of connectivity between pairs of parcellated brain regions. We then use an ICA based procedure to identify networks of connections whose temporal dynamics covary. We validate our method using MEG data recorded during a finger movement task, identifying a transient network of connections linking somatosensory and primary motor regions, which modulates during the task. Next, we use our method to image the networks which support cognition during a Sternberg working memory task. We generate a novel neuroscientific picture of cognitive processing, showing the formation and dissolution of multiple networks which relate to semantic processing, pattern recognition and language as well as vision and movement. Our method tracks the dynamics of functional connectivity in the brain on a timescale commensurate to the task they are undertaking
Conjugative Plasmids of Neisseria gonorrhoeae
Many clinical isolates of the human pathogen Neisseria gonorrhoeae contain conjugative plasmids. The host range of these plasmids is limited to Neisseria species, but presence of a tetracycline (tetM) determinant inserted in several of these plasmids is an important cause of the rapid spread of tetracycline resistance. Previously plasmids with different backbones (Dutch and American type backbones) and with and without different tetM determinants (Dutch and American type tetM determinants) have been identified. Within the isolates tested, all plasmids with American or Dutch type tetM determinants contained a Dutch type plasmid backbone. This demonstrated that tetM determinants should not be used to differentiate between conjugal plasmid backbones. The nucleotide sequences of conjugative plasmids with Dutch type plasmid backbones either not containing the tetM determinant (pEP5233) or containing Dutch (pEP5289) or American (pEP5050) type tetM determinants were determined. Analysis of the backbone sequences showed that they belong to a novel IncP1 subfamily divergent from the IncP1α, β, γ, δ and ε subfamilies. The tetM determinants were inserted in a genetic load region found in all these plasmids. Insertion was accompanied by the insertion of a gene with an unknown function, and rearrangement of a toxin/antitoxin gene cluster. The genetic load region contains two toxin/antitoxins of the Zeta/Epsilon toxin/antitoxin family previously only found in Gram positive organisms and the virulence associated protein D of the VapD/VapX toxin/antitoxin family. Remarkably, presence of VapX of pJD1, a small cryptic neisserial plasmid, in the acceptor strain strongly increased the conjugation efficiency, suggesting that it functions as an antitoxin for the conjugative plasmid. The presence of the toxin and antitoxin on different plasmids might explain why the host range of this IncP1 plasmid is limited to Neisseria species. The isolated plasmids conjugated efficiently between N. gonorrhoeae strains, but did not enhance transfer of a genetic marker
Deregulation of the telomerase reverse transcriptase (TERT) gene by chromosomal translocations in B-cell malignancies
Sequence variants at the TERT-CLPTM1L locus in chromosome 5p have been recently associated with disposition for various cancers. Here we show that this locus including the gene encoding the telomerase reverse-transcriptase TERT at 5p13.33 is rarely but recurrently targeted by somatic chromosomal translocations to IGH and non-IG loci in B-cell neoplasms, including acute lymphoblastic leukemia, chronic lymphocytic leukemia, mantle cell lymphoma and splenic marginal zone lymphoma. In addition, cases with genomic amplification of TERT locus were identified. Tumors bearing chromosomal aberrations involving TERT showed higher TERT transcriptional expression and increased telomerase activity. These data suggest that deregulation of TERT gene by chromosomal abnormalities leading to increased telomerase activity might contribute to B-cell lymphomagenesis
Optimising experimental design for MEG resting state functional connectivity measurement
The study of functional connectivity using magnetoencephalography (MEG) is an expanding area of neuroimaging, and adds an extra dimension to the more common assessments made using fMRI. The importance of such metrics is growing, with recent demonstrations of their utility in clinical research, however previous reports suggest that whilst group level resting state connectivity is robust, single session recordings lack repeatability. Such robustness is critical if MEG measures in individual subjects are to prove clinically valuable. In the present paper, we test how practical aspects of experimental design affect the intra-subject repeatability of MEG findings; specifically we assess the effect of co-registration method and data recording duration. We show that the use of a foam head-cast, which is known to improve co-registration accuracy, increased significantly the between session repeatability of both beamformer reconstruction and connectivity estimation. We also show that recording duration is a critical parameter, with large improvements in repeatability apparent when using ten minute, compared to five minute recordings. Further analyses suggest that the origin of this latter effect is not underpinned by technical aspects of source reconstruction, but rather by a genuine effect of brain state; short recordings are simply inefficient at capturing the canonical MEG network in a single subject. Our results provide important insights on experimental design and will prove valuable for future MEG connectivity studies
Electrically addressable vesicles: Tools for dielectrophoresis metrology
Dielectrophoresis (DEP) has emerged as an important tool for the manipulation of bioparticles ranging from the submicron to the tens of microns in size. Here we show the use of phospholipid vesicle electroformation techniques to develop a new class of test particles with specifically engineered electrical propserties to enable identifiable dielectrophoretic responses in microfabricated systems. These electrically addressable vesicles (EAVs) enable the creation of electrically distinct populations of test particles for DEP. EAVs offer control of both their inner aqueous core and outer membrane properties; by encapsulating solutions of different electrolyte strength inside the vesicle and by incorporating functionalized phospholipids containing poly(ethylene glycol) (PEG) brushes attached to their hydrophilic headgroup in the vesicle membrane, we demonstrate control of the vesicles’ electrical polarizabilities. This combined with the ability to encode information about the properties of the vesicle in its fluorescence signature forms the first steps toward the development of EAV populations as metrology tools for any DEP-based microsystem.National Institutes of Health (U.S.) (Grant RR199652)National Institutes of Health (U.S.) (Grant EB005753)Merck/CSBi (Fellowship)Solomon Buchsbaum AT&T Research Fun
Stromal gene signatures in large-B-cell lymphomas.
BACKGROUND: The addition of rituximab to combination chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP), or R-CHOP, has significantly improved the survival of patients with diffuse large-B-cell lymphoma. Whether gene-expression signatures correlate with survival after treatment of diffuse large-B-cell lymphoma is unclear.
METHODS: We profiled gene expression in pretreatment biopsy specimens from 181 patients with diffuse large-B-cell lymphoma who received CHOP and 233 patients with this disease who received R-CHOP. A multivariate gene-expression-based survival-predictor model derived from a training group was tested in a validation group.
RESULTS: A multivariate model created from three gene-expression signatures--termed germinal-center B-cell, stromal-1, and stromal-2 --predicted survival both in patients who received CHOP and patients who received R-CHOP. The prognostically favorable stromal-1 signature reflected extracellular-matrix deposition and histiocytic infiltration. By contrast, the prognostically unfavorable stromal-2 signature reflected tumor blood-vessel density.
CONCLUSIONS: Survival after treatment of diffuse large-B-cell lymphoma is influenced by differences in immune cells, fibrosis, and angiogenesis in the tumor microenvironment
- …