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The characterisation of dynamic electrophysiological brain networks, which form and dissolve in order to
support ongoing cognitive function, is one of the most important goals in neuroscience. Here, we in-
troduce a method for measuring such networks in the human brain using magnetoencephalography
(MEG). Previous network analyses look for brain regions that share a common temporal profile of ac-
tivity. Here distinctly, we exploit the high spatio-temporal resolution of MEG to measure the temporal
evolution of connectivity between pairs of parcellated brain regions. We then use an ICA based procedure
to identify networks of connections whose temporal dynamics covary. We validate our method using
MEG data recorded during a finger movement task, identifying a transient network of connections
linking somatosensory and primary motor regions, which modulates during the task. Next, we use our
method to image the networks which support cognition during a Sternberg working memory task. We
generate a novel neuroscientific picture of cognitive processing, showing the formation and dissolution
of multiple networks which relate to semantic processing, pattern recognition and language as well as
vision and movement. Our method tracks the dynamics of functional connectivity in the brain on a
timescale commensurate to the task they are undertaking.

& 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Measurement of statistical interdependencies between neuroi-
maging signals has revealed a number of robust networks of func-
tional connectivity in the brain (Beckmann et al., 2005; Corbetta,
1998; Fox and Raichle, 2007; Fox et al., 2005; Friston, 1994; Raichle
et al., 2001; Smith et al., 2009). These networks, each with their own
characteristic spatial signature, are thought to govern core mental
processes with some supporting sensory integration and others as-
sociated with cognition or attention. Most networks are observed
even in subjects at rest and are thus termed resting state networks
(RSNs). Characterisation of RSNs is an emerging focus: not only does
it offer new insight into how spatially separate regions integrate,
RSNs (and functional connections in general) have been shown to be
compromised in a variety of pathologies (Brookes et al., 2016; Friston,
1998; Guggisberg et al., 2008; Kessler et al., 2014; Palaniyappan and
Liddle, 2012; Schnitzler and Gross, 2005; Stufflebeam et al., 2011;
Tewarie et al., 2014; van Dellen et al., 2012) highlighting their clinical
importance. To date, the majority of functional connectivity studies
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have been based on an assumption of stationarity; i.e. a connection
between two regions is characterised by a single parameter derived
over many minutes (or even hours) of data. However, the brain is a
dynamic system and efficient function likely relies on the formation
and dissolution of many hierarchical networks at rapid time scales,
which support ongoing cognition. The characterisation of such
transient networks represents a key goal in neuroscience. Increasing
evidence (Allen et al., 2014; Baker et al., 2014; Baker et al., 2012;
Chang and Glover, 2010; Chang et al., 2013; de Pasquale et al., 2010;
de Pasquale et al., 2015; Hutchison et al., 2013; Karahanoğlu and Van
De Ville, 2015; O’Neill et al., 2015b; Smith et al., 2012; Yaesoubi et al.,
2015) suggests that such transient networks might be measured
using neuroimaging. In this paper, we introduce a method which
tracks the formation of functional electrophysiological networks, and
use it to image the network formations associated with self-initiated
movement, and working memory.

In order to track network dynamics effectively, we require a
modality which can match the rapid timescales of the brain. Func-
tional Magnetic Resonance Imaging (fMRI) has provided significant
evidence of non-stationary connectivity (Hutchison et al., 2013), but
its reliance on the blood oxygenation level dependant (BOLD) re-
sponse means the fastest time scales are obfuscated by the latency
and longevity of the haemodynamic response. In contrast, magne-
toencephalography (MEG; Cohen, 1968, 1972) detects changes in
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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extracranial magnetic fields induced by dendritic currents in the
brain. Because signals are generated from electrical activity in neu-
rons, it is possible to observe brain activity on a millisecond time-
scale. This temporal richness has been exploited via the introduction
of many techniques to quantify connectivity (Scholvinck et al., 2013)
and correlation between the amplitude envelopes of band limited
oscillations has shown that static networks, similar to RSNs observed
using fMRI, can be observed (Baker et al., 2014; Baker et al., 2012;
Brookes et al., 2011a; Brookes et al., 2011b; de Pasquale et al., 2010;
Hipp et al., 2012; Hipp and Siegel, 2015; Liu et al., 2010; Luckhoo
et al., 2012; O’Neill et al., 2015b; Wens et al., 2014b). More im-
portantly, the temporal richness facilitates measurement of con-
nectivity in short time windows, making MEG the method of choice
for capturing transiently active networks; indeed exploitation of the
spatiotemporal resolution of MEG has already shown that functional
connectivity changes on the time scale of seconds (Brookes et al.,
2014; O’Neill et al., 2015b) and even milliseconds (Baker et al., 2014).
However, this area remains in its infancy; few methods are available
and some remain limited by, for example, a-priori selection of brain
regions or the significant problem of signal leakage between regions
(Brookes et al., 2012b; Colclough et al., 2015; Wens et al., 2015).
Further, few studies have attempted to probe the evolution of dy-
namic networks during a task.

In this paper, we undertake analysis of the timecourses of dy-
namic connectivity. Our method is based upon measurement of
envelope correlation within small time-windows of data and be-
tween pairs of brain regions defined via cortical parcellation (Allen
et al., 2014; Bola and Sabel, 2015; Colclough et al., 2015; Finn et al.,
2015; Hassan et al., 2015; Hillebrand et al., 2012; Smith et al., 2015;
Tewarie et al., 2014). By computing dynamic connectivity in a
sliding window, we facilitate estimation of timecourses showing
the evolution of functional connectivity at an intermediate time-
scale on the order of a few seconds. These connectivity time-
courses are then analysed using independent component analysis
(ICA). Past studies have shown ICA to be a valuable tool to eluci-
date networks: for example, timecourses of brain ‘activity’ can be
acquired from multiple voxels and decomposed into a smaller
number of temporally independent components, with a single
component representing temporal signatures at multiple voxels;
assessment of which voxels contribute to each component yields
images of regions that share a temporal profile of activity (Brookes
et al., 2011b). Here, distinct from this, having characterised the
timecourses of connectivity, we decompose those timecourses in
such a way that a single component represents an independent
temporal signature shared by multiple connections. Assessment of
the specific connections contributing to a component allows elu-
cidation of networks of dynamically changing connectivities which
share a single temporal signature. (I.e. we assume that multiple
connections modulated in the same way in time are related
functionally.) Our method characterises both the way in which
connectivity evolves in time, and the spatial signatures of that
evolution. In this way, we can uniquely track the dynamic beha-
viour of networks, on a timescale which is commensurate to the
task they are undertaking.
2. Methods

2.1 Data Acquisition

Two separate MEG datasets were acquired. Both were approved
by the University of Nottingham Medical School Research Ethics
Committee.

� Dataset 1 – Self Paced Motor task: 15 volunteers (9 male, aged
25 7 4 years (mean 7 SD)) were asked to execute a button
Please cite this article as: O’Neill, G.C., et al., Measurement of dynamic
http://dx.doi.org/10.1016/j.neuroimage.2016.08.061i
press with the index finger of their non-dominant hand. Sub-
jects were instructed to press the button infrequently; they
were told that a button press should be executed approximately
once every 30 seconds, but precise timekeeping was not im-
portant and they should not count the time between presses. A
subset of these data has been used in prior publications (O’Neill
et al., 2015b; Vidaurre et al., 2016).

� Dataset 2 – Sternberg task: 19 healthy participants (10 male,
aged 2573 years) performed a Sternberg working memory
task. Two example visual stimuli (abstract geometric shapes)
were presented on a screen; each stimulus was shown for 0.6 s
with 1 s between onsets. Following this, a period of 7 seconds
was left, known as the maintenance phase, before a third (probe)
stimulus was presented. If the probe stimulus matched either of
the two example stimuli, the subject was told to execute a
button press with their right index finger. Subjects received
immediate feedback as to whether their response was correct.
Trials were separated by 30 seconds of rest, where subjects
fixated on a cross. 30 trials were presented to every subject.

MEG data were recorded using a 275-channel CTF MEG system
(MISL; Coquitlam, BC, Canada) in synthetic 3rd order synthetic
gradiometer configuration; at a sampling rate of 600 Hz. Subjects
were positioned supine. To ascertain the location of the head
within the MEG helmet, three head position indicator (HPI) coils
where attached to the subject at the nasion and preauricular
points. These were energised periodically in order to track con-
tinuously the subjects head position. To allow coregistration of
brain anatomy to the MEG sensor geometry, a measurement of the
locations of the HPI coils relative to the scalp surface was created
with a 3D digitiser (Polhemus; Colchester, VT). Anatomical images
were acquired using either a 3T or 7T Philips Achieva MRI scanner
(MPRAGE; 1 mm3 resolution). Coregistration of MEG data to ana-
tomical MRI was then achieved by matching the digitised head
surface to the equivalent surface extracted from the MRI.

2.2 Pre-processing and Source Reconstruction

MEG data were initially inspected visually. Any trials deemed to
contain excessive interference, for example generated by muscles
or eye movement, were removed. In addition, datasets in which
the subject's head moved more than 5mm (Euclidean distance)
from its starting position were excluded. A schematic of the sub-
sequent data processing pipeline is given in Fig. 1.

Following pre-processing, data were analysed using beam-
forming. The cortex was parcellated using the Automated Anato-
mical Labelling (AAL) atlas (Tzourio-Mazoyer et al., 2002) which
had been modified by removing subcortical ROIs to leave 78 re-
gions (Gong et al., 2009), and was transformed to each individual's
brain geometry using FMRIB Linear Image Registration Tool (FLIRT)
(Jenkinson et al., 2012). In order to obtain a representative time-
series for every region, the centre of mass of each region was
defined and used as a single representative location (Fig. 1 – step
1). MEG data were frequency filtered 1-150 Hz and source loca-
lised using an adaptive beamformer (Robinson and Vrba, 1998;
Van Veen et al., 1997) in order to derive 78 source timecourses per
subject, one for each AAL region (Fig. 1 – step 2). For beamforming,
data covariance was defined in a frequency window spanning
1-150 Hz and a time window covering the entire experiment
(Brookes et al., 2008). The covariance matrix was regularised using
the Tikhonov method with the regularisation parameter set such
that the regularised covariance matrix would have a condition
number of 100. Forward fields were based upon dipole approx-
imations (Sarvas, 1987) and a multiple local spheres head model
(Huang et al., 1999). Dipole orientation was determined using a
non-linear search for the optimal signal to noise ratio (SNR)
task related functional networks using MEG. NeuroImage (2016),
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Fig. 1. A schematic diagram describing the fundamental processing pipeline.
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(Robinson and Vrba, 1998; Sekihara et al., 2004). This process
creates a source space data matrix, Q of dimension ×n nn s, where nn

is the number of AAL regions (78) and ns is the number of samples.

2.3 Dynamic Functional Connectivity Analysis

We aimed to undertake a dynamic, all-to-all, functional con-
nectivity analysis. This means that connectivity between all pos-
sible pairs of AAL regions is estimated, as a function of time, using
a sliding window approach. Previous work (Baker et al., 2014; Hipp
et al., 2012) has shown that functional connectivity is dependent
on frequency band studied; for the self-paced motor study we
employed a 13-30 Hz frequency window and for the Sternberg
task, we employed a 4-30 Hz frequency window as it has been
shown multiple frequency bands contribute to working memory
(Brookes et al., 2012a). After frequency filtering, Q was segmented
into overlapping time windows (Fig. 1 – step 3): we denote the
data in a single window, Q i, which has dimensions δ×n fn . Here, i
denotes window number, δ is the window width in seconds, and f
is sampling frequency. In everything that follows δ ¼ 6 s; the
window was shifted in time by 0.5 s for each window number (i).
In the self-paced motor task, time windows were centred between
t ¼ �12s and t ¼ 12 s (where t represents window centre relative
to the button press). There were 49 time windows per trial. In the
Sternberg task, time windows were centred between t ¼ �13s
and t ¼ 25 s (t represents window centre relative to trial onset).
There were 75 time windows per trial. Within each window, we
measured connectivity between all pairs of AAL regions.

In MEG, a significant confound for source space connectivity is
that the ill-posed inverse problem, coupled with inaccuracies in
the forward solution, cause a degree of spatial blurring and mis-
localisation of sources. This means that two beamformer derived
timecourses (e.g. from two regions) may exhibit significant cor-
relation, purely due to ‘signal leakage’. Without careful control,
this artifactually inflates estimated connectivity between regions
(Maldjian et al., 2014). Signal leakage has been well studied, with a
Please cite this article as: O’Neill, G.C., et al., Measurement of dynamic
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number of methods for leakage reduction now in place (Brookes
et al., 2012b; Hipp et al., 2012; O’Neill et al., 2015a; Wens et al.,
2015). Most methods rely on the fact that leakage manifests as a
zero-time lag linear summation of underlying signals and for this
reason orthogonalisation of beamformer projected signals (e.g.
orthogonalisation of the rows of Q i) results in the effective re-
moval of leakage, albeit at the expense of genuine zero-lag con-
nectivity. An elegant means to achieve orthogonalisation si-
multaneously over a set of multiple brain regions was recently
proposed by Colclough et al. (2015). Here, signals from all nn re-
gions are symmetrically orthogonalised within a single computa-
tion. The full mathematical details of this procedure can found
elsewhere (Colclough et al., 2015). Briefly, the method involves
two steps: First, a set of orthonormal time-courses, closest to the
data matrix Q i and for which there is a simple analytic solution, is
found. Second, the solution is finessed by iteratively adjusting the
lengths and orientations of the corrected vectors until the solution
is as close as possible to the uncorrected timecourses. The result is
a set of matrices, Oi, whose rows contain the orthogonalised
(windowed) time series for all 78 AAL regions (Fig. 1 – step 4). Note
that the leakage reduction step was applied on each window se-
parately (separate orthogonalisation for each i), rather than on the
whole time series. This is because previous work (O’Neill et al.,
2015b) has shown that leakage depends on signal to noise ratio,
which changes in different time windows.

Following leakage correction, the amplitude envelopes of the
windowed timecourses were found using Hilbert transformation.
This resulted in a set of matrices Ei whose rows contained the
amplitude envelopes of orthogonalised neural oscillations (i.e. the
envelope of the rows of Oi; Fig. 1 – step 5). Following this, Pearson
correlation between amplitude envelopes was measured to form
connectivity matrices, Ri, such that
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where eik represents the vector of timecourse measurements in
the kth row of Ei and ( )r x y, represents the Pearson correlation
coefficient between x and y. In other words, Ri represents an

×n nn n adjacency matrix representing connectivity between all AAL
region pairs, in time window i (Fig. 1 – step 6). This process was
repeated for all i, resulting in a set of N matrices per subject (one
for each time window used; N represents the number of windows
per subject). These matrices were concatenated both in time and
over all subjects (Fig. 1 – step 7) to form an adjacency tensor, R,
with dimensions × ×n n NNn n s, where Ns represents the number of
subjects.

2.4 Temporal ICA

The adjacency tensor, R, measures the temporal evolution of
functional connectivity between all pairs of AAL brain regions. We
now seek to apply ICA to derive independent temporal signatures
of connectivity. To be able to perform ICA we need to reduce to the
dimensionality of the data (Fig. 1 – step 8). We begin by vectorising
each ×n nn n matrix Ri into a × n1 n

2 row vector. Then, noting that the
inherent diagonal symmetry in the adjacency matrix leads to re-
dundancy, we remove that redundancy to generate the × n1 c

vector ρi, where = −nc
n n

2
n n
2

is the total number of unique con-
nections modelled in Ri. These multiple row vectors are then
concatenated in time to generate a new matrix Ρ such that

⎡⎣ ⎤⎦Ρ ρ ρ ρ= …, , , NN
T

1 2 s
. This means that each column of Ρ represents

the timecourse of an individual connection between 2 AAL regions.
The dimensionality of this matrix was further reduced by pre-
whitening, and ICA was then used generate nic temporally in-
dependent components. Mathematically,

Ρ = ( )AX , 2T

where the rows of the ×n NNic s matrix X represent temporally
independent signatures of functional connectivity, collapsed
across all connections. The mixing matrix, A, has dimension

×n nc ic and each column represents the contribution of each in-
dividual connection to the independent component. The ‘hat’

notation in Eq. 2 denotes that Ρ̂ is an estimate of Ρ based upon
the derived independent components. Here, Ρ was formed by
concatenating all time windows, including all trials and subjects.
The ICA decomposition (including prewhitening) was performed
using the fastICA method (Hyvarinen, 1999) using a deflation
approach with =n 10ic . The spatial signature of each derived in-
dependent component was reconstructed based upon the col-
umns of A (Fig. 1 – step 9).

2.5 Testing for task-modulated networks

The above analyses yield a set of ( = )n 10ic networks, showing
functional connections that share similar (independent) temporal
profiles. The challenge now becomes to determine which of these
represent genuine brain processes. The question of which in-
dependent components to keep and which reflect only noise is a
problem in all ICA based methods. Here for simplicity, we sought
to determine which components were modulated significantly by
the tasks. Our procedure was based on previously described al-
gorithms (Clare et al., 1999; Hunt et al., 2012; Winkler et al., 2014).
We first defined a new matrix, X̄, containing nic trial averaged
independent component timecourses (i.e. X̄ is just X averaged
over all trials in all subjects; i.e. the ‘bar’ notation represents a trial
average.) The size of X̄ was ×N nTrial c (where NTrial represents the
number of time windows per trial; 49 for the self-paced task and
75 for the Sternberg task). Following this, we constructed two
empirical null distributions:
Please cite this article as: O’Neill, G.C., et al., Measurement of dynamic
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1. In the first case, a ‘sham’ matrix, X̃flip, was generated in ex-
actly the same way as X̅, but prior to averaging over trials,
half of the subjects were selected randomly and the sign of
their contribution to the independent components in X was
‘flipped’ (i.e. multiplied by �1). We reasoned that, if the
independent components were not related to the tasks, this
sign flipping would have no effect on the magnitude of the
trial averaged timecourses, and therefore the magnitudes of

fluctuations in X̃flip and X̄ would match. However, if the in-
dependent components contained trial-onset-locked in-
creases or decreases in connectivity, which were robust
across subjects, then these would be maintained in X̄ but

diminished in X̃flip. This procedure was repeated 6435

times for the self-paced data (reflecting C7
15 where

( ))( )( )= ! ! − !C n k n k/k
n and 92,378 times for the Sternberg data

( )C9
19 , giving all possible realisations of X̃flip, with a different

set of subjects selected each time. In this way an empirical
null distribution was constructed against which the magni-
tude of signal fluctuations in X̄ was tested. Note that this
‘sign-flipping’ permutation approach has been employed in
previously published work (Hunt et al., 2012; Winkler et al.,
2014).

2. In the second case, we reasoned that if no task induced re-
sponse was expected, then the trial onset times would be
meaningless. The trial averaging procedure was again repeated,
however rather than the trial averaged data ( X̅) defined based
on genuine trial onsets, a ‘sham’ averaged dataset, X̃onset, was
defined based on randomly selected ‘sham trial onsets’. 6000
realisations of X̃onset were created, again allowing for the gen-
eration of a null distribution for each time point and each in-
dependent component.

An independent component was deemed significant if, at any one
time point in the trial average, the associated column of X̅ fluctuated
such that it fell outside a threshold defined by the null distributions for
both tests (sign-flip and randomised onset). The threshold for sig-
nificance was defined at 0.05, however this was corrected in three
ways: First a 2-tailed distribution was allowed, meaning that fluctua-
tions in the columns of X̅ could be both greater than, or less than the
null distributions. Second, we Bonferroni corrected for multiple com-
parisons across the 10 independent components (for both tasks).
Third, we Bonferroni corrected across independent temporal degrees
of freedom. Note that the 6 s sliding window used to estimate con-
nectivity means that the number of temporal degrees of freedom in
the averaged trial is substantially less than the number of time points.
Here, we assumed that a single temporal degree of freedom was ad-
ded each time the window shifts by more than half of its width (i.e.
when adjacent windows share less than 50% overlap). This meant a
total of 8 temporal degrees of freedom in the self-paced data and
12 in the Sternberg data. Thresholds were therefore set at
( ( × ×0.05/ 2 10 8) ¼ 0.0003) for the self-paced experiment and
( ( × ×0.05/ 2 10 12) ¼ 0.0002) for Sternberg experiment. [It is im-
portant to note that these Bonferroni corrections are rigorous, but
nevertheless are likely conservative; in future uses of this technique
methods based on, for example, maximal statistics (Sekihara et al.,
2005) might offer a less conservative approach.]
3. Results

In what follows, we demonstrate the utility of our method in
real MEG data, however our methodology was also tested in si-
mulation. These results can be found in the Appendix and
task related functional networks using MEG. NeuroImage (2016),
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Fig. 2. Results of the self-paced experiment. A) Matrix representation of the network; the ordering of the 78 AAL regions is overlaid. Note that the values in the matrix are
the ICA derived mixing coefficients. B) 3D representation of the same network, thresholded for visualisation. Lines show connections, with thicker lines indicating stronger
connections. Circles represent the summed magnitude of connectivity between that region and the rest of the brain. C) Time evolution of the network during the self-paced
finger movement task, averaged across trials in all subjects (black line). Time represents the position of the centre of the 6 s window, relative to the button press at t ¼ 0 s.
The grey shaded region represents the null distribution based on a hypothesis that the response is not time locked to the button press. D) Sign-flip analysis, again showing
the mean response across all 15 subjects (black line). The grey shaded area represents the null distribution based on a null hypothesis that the modulation is driven by a
small number of subjects. Significance (pcorrectedo0.05) is attributed if the black line appears outside the null distribution in both C and D. Note that the network clearly
represents the primary somatosensory, motor and supplementary motor regions and demonstrates significant modulation with the task. (An interactive version of this
Figure can be found at http://nottingham.ac.uk/�ppzgo/ica_nets.).
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supplementary material.
Fig. 2 shows the results of our method applied to the self-paced

data. Although 10 independent components were derived, here we
present one of two networks that demonstrated significant task
modulation as an example. The other 9 networks are shown in
supplementary material. Fig. 2A shows a matrix representation of
the network. The ordering of the 78 AAL regions is overlaid for
reference. Fig. 2B shows the same network represented in 3D and
thresholded (70% of the maximum connection strength) for clarity.
Both the matrix and 3D visualisation show clearly that the net-
work is centred on the right primary somatosensory cortex and
highlights strong connections both between sensory and motor
areas, the supplementary motor regions and left primary sensor-
imotor cortices. Fig. 2C shows the time evolution of this network,
represented as the corresponding trial averaged independent
component in X̅j. Time values on the x-axis represent the centre of
the window with respect to the button press, which was at time
zero and is shown by the vertical line. The grey area represents the
null distribution generated by randomising the trial start times
( X̃onset). Significant modulation of connectivity occurs during the
task; although this begins �3 s prior to the button press, recall
that the window size used was 6 s, generating inherent temporal
uncertainty. Fig. 2D mirrors the results in Fig. 2C, but the grey area
shows the empirical null distribution derived using the ‘sign-flip’
analysis ( X̃flip). Again, the black line represents the average re-
sponse across all subjects, and the grey distribution is the 95th

percentile threshold for the null distribution. Overall, it is clear
Please cite this article as: O’Neill, G.C., et al., Measurement of dynamic
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that a network, representing primary somatosensory and motor
regions, is modulated significantly by the task. Given that the task
requires both movement, and elicits a tactile response (since the
subject will feel the button press), this network is plausible. A
second component, representing the visual network, also showed
significant modulations around the time of the button press, this
can be found in the supplementary material.

Fig. 3 shows the results of our method applied to the Sternberg
dataset. Clearly, the increased cognitive load evoked by the
Sternberg tasks elicits changes in a greater number of brain net-
works, and this is shown by 9 of the 10 networks derived de-
monstrating significant task induced modulation. Fig. 3 is laid out
such that the columns represent: (A) a 3D network visualisation,
(B) the average timecourse (19 subjects) alongside a null dis-
tribution based upon X̃onset and (C) the average timecourse
alongside a null distribution based upon X̃flip. The separate rows (I
through IX) show the 9 networks which modulate significantly.

Unsurprisingly given the visual nature of the task, the four
networks showing early task modulation all involve the visual
areas. These are shown in rows I to IV of Fig. 3. Specifically, row I
depicts a primary visual network whose connectivity increases
during presentation of the two example stimuli (and also during
the probe). Rows II and III show left and right lateralised con-
nections between the primary visual areas and tempero-parietal
regions, with both networks exhibiting an early increase in con-
nectivity peaking immediately before presentation of the example
stimuli. Row IV shows a visual to right motor cortex connection,
task related functional networks using MEG. NeuroImage (2016),
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Fig. 3. Results of the Sternberg experiment. The separate columns show A) 3D network visualisation. B) The average timecourse across 19 subjects with null distribution
based on randomised trial start times. C) Equivalent to B but null distribution based upon sign flipping. Rows I to IX show the 9 networks which modulate significantly with
the task, including I) primary visual; II) Visual to left tempero-parietal; III) Visual to right tempero-parietal; IV) Visuomotor V) Somantic; VI) Language; VII) Refined Visual to
left tempero-parietal; VIII) Refined visuomotor; IX) Sensorimotor. Note how the timings allow a temporal sequence of network involvement to be deduced. (An interactive
version of this Figure can be found at http://nottingham.ac.uk/�ppzgo/ica_nets.).
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which demonstrates a significant drop in connectivity during
presentation of the example stimuli. Transient networks forming
in later task phases are shown in rows V to IX. Row V shows a
breakdown in connectivity during the task maintenance phase
within a bilateral parietal, temporal and frontal network. Inter-
estingly, this network captures some areas associated with the
default mode network whose activity is known to decrease with a
cognitive task. However, the network also captures areas asso-
ciated with semantic processing and is thus termed the semantic
network. Row VI highlights a left lateralised network that in-
corporates regions of temporal, parietal and frontal cortex. The
regions implicated are strongly associated with the production of
language as well as shape and pattern recognition; this is con-
sistent with peaks in connection strength occurring during pre-
sentation of the stimuli. Row VII shows a refined visual to tem-
poral and parietal network, similar to that in III but this time
peaking around the time of the probe stimulus. Row VIII again
shows a visual to motor connection (similar to IV), and finally row
IX shows the sensorimotor network which becomes most strongly
connected around the time of the button press response (in
agreement with our result in Fig. 2). It is noteworthy that the brain
regions implicated in these networks incorporate the primary
sensory cortices, association areas, and cognitive networks that
Please cite this article as: O’Neill, G.C., et al., Measurement of dynamic
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would be associated with semantic processing, pattern recognition
and verbalisation, and so these networks are plausible given the
task. This is addressed further in our discussion.
4. Discussion

This paper has introduced a novel ICA based method which,
when applied to MEG data, allows characterisation of transiently
forming and dissolving electrophysiological networks in the brain,
at time-scales much faster than could be achieved using fMRI.
Previous MEG-ICA-network approaches typically look for brain
regions whose activity, measured as a function of time, covaries.
Here distinct from this, we measure the temporal evolution of
functional connectivity between regions and use temporal ICA to
cluster together connections that share similar temporal profiles. In
this way, we identify networks of connections whose temporal
dynamics covary, with no prior assumptions. This allows us to
identify where and when significant modulations in connectivity
occur, We have verified our method in simulation (see appendix
and supplementary material) and using a simple finger movement
task. Moreover, we have shown that our method allows generation
of a unique picture of cognitive processing, showing the formation
task related functional networks using MEG. NeuroImage (2016),
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and dissolution of multiple brain networks required to allow
subjects to complete a working memory task.

The results generated by our method are of significant neu-
roscientific interest and warrant further discussion. However prior
to this, two key points regarding the method should be understood:
Firstly, the timecourses shown in Figs. 2 and 3 depict increases and
decreases in connectivity. In other words, the peaks refer to points in
time when two or more regions defining a network are most corre-
lated. Just because regions are not correlated at some particular point
in time, does not necessarily mean that those regions are not engaged
by the task. This is an important point since many of the regions
implicated by our networks are likely to be engaged constantly
throughout the Sternberg task, but may only connect to wider net-
works at specific points in time. Second, recall that there is inherent
temporal smoothness in the method. Despite the excellent temporal
resolution of MEG, a reasonable data window is required in order to
derive reliably each individual adjacency matrix Ri (see also below).
Here we employ a 6 s window width, meaning that features in a
timecourse have an inherent temporal uncertainty of 73 s. This
means that, for example in the self-paced motor task where con-
nectivity appears to increase before the button press, there is a degree
of ambiguity; this could be representative of preparatory effects, or
could result simply from the limited temporal resolution of the
method. This temporal resolution is lower than other MEG based
connectivity techniques, for example the Hidden Markov model in-
troduced by Baker et al. (2014). However this 73 s resolution allows
us to investigate the functional connections which evolve at an in-
termediate scale between the infra-slow connection evolution and
the millisecond scale; this scale remains significantly higher than
would be possible using techniques such as fMRI where a 6 s window
would not facilitate sufficient data capture to accurately define con-
nectivity. With these two considerations in mind it proves instructive
to discuss the primary results of our method applied to the two da-
tasets used. Fig. 2 shows clearly that a network of brain connections
involving primary somatosensory and motor cortices, as well as
supplementary motor areas, can be identified based upon our self-
paced finger movement task. Furthermore, this network of connec-
tions modulates significantly with the button press. Although simple,
this result confirms the validity of our method by depicting clearly
the primary sensorimotor and motor planning regions. The fact that
only one other network (visual) modulates significantly with the task
also helps to verify that the statistical method used is capable of re-
jecting those networks that do not show task modulation.

In the Sternberg task, the formation of networks encompassing
visual (Fig. 3,I) and sensorimotor (IX) regions is consistent with the
presentation of visual stimuli and execution of the motor response
(Metzak et al., 2011; Woodward et al., 2013; Yamashita et al., 2015).
Nodes in the occipital lobe typically include a lateral component which
supports the notion that lateral occipital cortex (LOC) is specialised for
object shape recognition (Corbetta et al., 1991; Grill-Spector et al.,
2001; Haxby et al., 1994; Kourtzi and Kanwisher, 2001). Other net-
works encompass areas thought to be responsible for the higher level
cognition required for successful completion of the Sternberg task. The
Angular Gyrus (AG) is particularly evident in the majority of these
networks. Structurally this region has been identified as a centrally
connected hub serving multiple sub-networks. This hub has also been
identified functionally in a variety of task-positive contexts ranging
from semantic processing to numerical calculation. A unified account
of AG function is presented by Seghier (2013) who suggests that the
AG is an integration site receiving input from sensory (Demonet et al.,
1992; Vandenberghe et al., 1996), memorial (Geschwind, 1965) and
higher-level nodes. We speculate that the extent of our higher order
networks is in agreement with this model of AG function. Notably, the
dorso-lateral pre-frontal cortex (DLPFC) is recruited in network V,
connecting bilaterally with the AG. The left and right DLPFC are well
established in the literature as controlling executive-attention function
Please cite this article as: O’Neill, G.C., et al., Measurement of dynamic
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in working memory (Barbey et al., 2013; Kane and Engle, 2002), with
the right DLPFC being shown to be sensitive to shape in particular
(Nystrom et al., 2000). This network also incorporates bilateral inferior
temporal gyri, regions considered important for semantic processing
(Vigneau et al., 2006). This leads us to name this network as a ‘se-
mantic network’. This network was also seen in a recent study by
Shine et al. (2015), who saw the connectivity between the DLPFC and
ventral visual regions vary with cognitive load in a working memory
task. A second cognitive network (VI) has been termed a ‘language
network’. Although stimuli were abstract shapes, participant feedback
suggests a ‘naming’ strategy was used in the majority of cases. If a
verbalization strategy was employed by the participants to aid in
memory encoding, then nodes of the language network may be im-
plicated. Indeed, this left lateralised network is anchored in the AG
with extensions to the inferior frontal gyrus (IFG), inferior temporal
gyrus and a number of nodes spanning the inferior to superior pre-
central gyrus. These regions are consistent with previous accounts of
semantic cognition (Binder et al., 1997; Demb et al., 1995; Derrfuss
et al., 2004; Kang et al., 1999; Vigneau et al., 2006). Furthermore, this
effect was also seen by Caminiti et al. (2015) in a similar (abstract
shape based) working memory task. These authors also considered a
verbalisation strategy as the likely interpretation. Finally, two net-
works (IV & VIII) show ipsilateral motor connectivity with an extended
network of occipital and parietal nodes. This is unusual considering
the expected motor response would be in the contralateral hemi-
sphere. However, the 4Hz-30Hz frequency band used encompassed
alpha and beta oscillations and it is possible that, to suppress ipsi-
lateral motor activity, alpha oscillations are increased (Brinkman et al.,
2014). Overall, the transient networks induced by the Sternberg task
are plausible given the previous literature on working memory and
sensory processes.

The applications of these methods in the clinical domain are
promising. It is well known that neural oscillations, upon which
these connectivity metrics are based, are perturbed in a wide
variety of developmental, psychotic and degenerative disorders.
Similarly the efficacy of aspects of cognition such as working
memory are also significantly reduced in many patients. It follows
that the time-evolving networks of functional connectivity derived
in the present paper may differ between control and patient
groups, and such findings might offer a novel means to understand
the neural substrates underlying cognitive decline in disease. Fu-
ture studies will therefore likely be able to employ the metho-
dology presented here to highlight dysconnectivity in disorders
such as schizophrenia, where abnormal recruitment of brain re-
gions might be expected.

Methodological considerations

Our algorithm allows detection and characterisation of tran-
siently forming task induced electrophysiological networks. In
achieving this, two core parameters require setting, the window
width (here 6 s) and the number of independent components
(here 10). Both warrant further discussion. A judicious selection of
window width is important, and represents a trade-off between
temporal resolution and the accuracy of the derived adjacency
matrices. Here, separate elements of the adjacency matrices are
based upon temporal correlation of envelope signals within the
window. It is well known that the accuracy of correlation between
two variables (r) relates to the number of degrees of freedom (η) in
the underlying data; specifically if one assumes no underlying
genuine correlation between two timecourses then standard de-
viation of correlation, σ η( ) =r 1/ ; i.e. the variability (noise) in-
herent in the adjacency tensor is increased as η is decreased.
Further, the number of degrees of freedom in a windowed envel-
ope timecourse is unrelated to the number of sample points (or
sampling frequency). In fact, Fourier theory shows that for
task related functional networks using MEG. NeuroImage (2016),
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envelope data, an upper limit on degrees of freedom is given by
η δ= Bw , where δ is the window width and Bw represents band-
width of the carrier signal (i.e. for a 13-30 Hz beta envelope,

=B Hz17w ). This means that σ δ( ) =r B1/ w ; in other words, ad-
jacency matrix noise is increased by either reducing bandwidth of
the carrier signal, or the window width. Typically, bandwidth is set
by the scientific question to be asked (e.g. one might be interested
in beta band networks, such as in the self-paced motor study), and
therefore δ must be set to reduce the random noise to an accep-
table level. Here σ ( ) =r 0.1 for the self-paced data and σ ( ) =r 0.08
for the Sternberg data, which was deemed acceptable. Future
studies should bear this calculation in mind. The selection of the
number of independent components is less well prescribed; this is
not a limitation of our algorithm directly, but rather is a funda-
mental question for all ICA methodologies. In the present work we
selected 10 components based on our previous experience, al-
though varying this parameter in our current work made little
difference to the overall results. Further, here we select which
independent components to keep based upon those networks
which modulate significantly with the task. However, just because
a network does not modulate with the task does not necessarily
mean that this network is not genuinely representative of con-
nectivity. Future work should therefore seek other methods to
determine validity of networks, particularly if the present algo-
rithm was to be used for resting state investigation.

In addition to parameter selection, there are three other core
components of the method that warrant discussion; namely, the
choice of cortical parcellation, the underlying source space pro-
jection method, and the choice of connectivity metric. First, re-
garding the AAL parcellation, this was chosen based on its suc-
cessful use in previous MEG investigations (e.g. Tewarie et al.,
2016). However, our method could be used with any cortical par-
cellation, provided that the number of regions is sufficiently low,
and those regions are sufficiently well separated to ensure that the
windowed data matrices, Q i, are of full rank. (This is a requirement
of the orthogonalisation procedure (Colclough et al., 2015).) It is
noteworthy that the separate AAL regions vary markedly in size;
our use of a single point location, based on the centre of mass of
the region, may therefore mean that some regions are better re-
presented than others. This suggests that brain regions that are
poorly represented may be missing from the networks shown. For
example, one would expect that areas in the ventral visual path-
way (e.g., fusiform gyrus) to involved in our Sternberg task.
However, they were not core to any of the networks shown. A
likely reason is that they are missed by the cortical parcellation
and single point (centre of mass) representation. The future use of
brain parcellations based on functional MRI (Craddock et al., 2012),
MEG, multmodal (Glasser et al., 2016), or even a-priori (literature
based) knowledge of brain regions involved in a task may there-
fore prove instructive. Secondly, for source localisation, we chose
to employ a beamformer spatial filtering procedure. Beamforming
is a popular method of inverse solution and has been shown
previously to be particularly useful in the characterisation of
neural oscillations. Further, beamforming has been used success-
fully in the measurement of static (Brookes et al., 2011a) and dy-
namic (Baker et al., 2014) functional connectivity. The reasons for
the success of this algorithm in such studies has been addressed at
length in previous papers, and will not be repreated here. How-
ever, we point out that other inverse solutions could be sub-
stituted for beamforming in the present processing pipeline, and
would likely generate similar results. Thirdly, we chose an envel-
ope correlation procedure as our estimator of functional con-
nectivity between regions. This procedure has been successful in
elucidating electrophysiological networks of functional con-
nectivity (Colclough et al., 2016), particularly in the study of the
electrophysiological basis of haemodynamic networks (Tewarie
Please cite this article as: O’Neill, G.C., et al., Measurement of dynamic
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et al., 2016). However, other methods (for example those based on
fixed phase measurements between regions) are available; these
should not be considered competitor techniques but rather ways
to probe a different type of functional connectivity (Scholvinck
et al., 2013). For example, using a time-varying multivariate au-
toregressive model, it has been demonstrated that task-dependent
brain states can be identified in a finger tapping task, and corre-
spond to unique cross-spectral (i.e. coherence) patterns (Vidaurre
et al., 2016). Although at present this method this is limited
(computationally) to pairs of brain areas, whereas our method in
this paper is whole-brain. The two methods may be combined in
the future. Indeed, the adjacency matrices derived in our metho-
dology could easily be substituted for similar adjacency matrices
derived using any alternative metric (assuming sufficiently high
signal to noise ratio), and transient networks probed.

We note that there is significant variability in the timecourse of
connectivity across subjects. This is demonstrated in null dis-
tributions formed based upon randomized sign flip in half of the
subjects; i.e. if connectivity change was equal in all subjects, the
sign flip would perfectly cancel any task response, and no variation
over time would be seen in the in null distributions (grey shaded
regions in Figs. 2D and 3C). The fact that null distributions follow,
to a degree, the genuine timecourses shows, in the Sternberg and
self-paced experiments, a marked variation in connectivity profile
over subjects. In fact, relatively poor within and between subject
reliability of (static) MEG connectivity measurements has been
shown previously. For example, Wens et al. (2014a) show that
whilst group level static connectivity within several well-known
distributed networks is stable, there is significant variability at the
individual subject level. Similarly Colclough et al. (2016) tested the
cross session repeatability of a large number of static functional
connectivity measurements, showing clearly that although group
level inference is reliable, network metrics can be very variable
across individuals. In addition, Tewarie et al. (2016) used MEG
networks to predict those observed in fMRI; whilst predictions
were robust at the group level, they fared less well within in-
dividuals. Interestingly, these variations across subjects may not be
due to stochastic noise, but rather identifiable intrinsic processes
which are subject specific (Finn et al., 2015). Given these previous
findings of large inter-individual differences in static connectivity,
it is not surprising that dynamic functional connectivity metrics
presented here also exhibit relatively high inter-individual differ-
ences. There are a number of possible explanations for this. Firstly,
our measurement of connectivity itself (i.e. the dynamic adjacency
matrices) are based only on 6 s of unaveraged MEG data. Given the
relatively low SNR of MEG data it is possible that reliability is only
realised with large quantities of data – hence the requirement for
large subject cohorts. Second, source localisation could affect the
robustness of connectivity; here we use beamforming alongside
the AAL atlas, a technique well established by previously published
work. However, a limitation is that if a specific region, e.g. left
motor cortex, is mislocalised (e.g. due to a poor forward model in
one subject) then the signal derived would no longer be re-
presentative of that region. This potential confound would add
markedly to variability over subjects. Thirdly, the reliability of the
amplitude envelope correlation metric itself could be questioned.
However, Colclough et al. (2016) showed that of all of the MEG
based connectivity metrics, AEC fared well in terms of robustness
over repeated measures. Finally, this variability could genuinely
reflect the variability across individual subjects in terms of the
neural network mechanisms used to carry out the tasks under-
taken. Ultimately, if techniques like the one presented here are to
be useful clinically, then we must derive means to ensure their
robustness in individuals. Further effort is thus needed in this area.
task related functional networks using MEG. NeuroImage (2016),
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5. Conclusion

The characterisation of dynamic electrophysiological brain
networks, which form and dissolve in order to support ongoing
cognitive function, is one of the most important challenges in
neuroscience. Here, we introduce an ICA based method for mea-
suring such networks in the human brain using MEG. Previous
MEG-ICA network analyses look for brain regions that share a
common temporal profile of activity. Here distinctly, we measure
the temporal evolution of connectivity between region pairs and
use ICA to identify clusters of connections that share an in-
dependent temporal profile. The validity of our method was de-
monstrated in simulation and in a self-paced finger movement
paradigm, showing that a sensorimotor network can be dis-
tinguished. The broader applicability of our method was demon-
strated by its application to a Sternberg task. We have shown that
our method allows generation of a unique picture of cognitive
processing, showing the formation and dissolution of the brain
networks required to allow subjects to complete the task. This
represents a significant step forward in the characterisation of
brain network connectivity and will prove to be a key tool in the
future investigation of healthy brain networks, and their break-
down in a variety of pathological conditions.
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Appendix. Validation by simulation

The validation of our methodology provided in this paper is
centred upon its application to real MEG data. However, it also
proves instructive to examine the performance of our methodol-
ogy in simulation. The performance of envelope correlation as a
means to examine connectivity in short time windows has been
addressed extensively in previous work (Brookes et al., 2014;
O’Neill et al., 2015b) and will not be repeated here. However, the
ability of ICA, applied to timecourses of connectivity, to extract the
spatiotemporal signatures of multiple brain networks has not yet
been validated. In what follows, we test the extent to which ICA
characterises a set of simulated networks which are obfuscated by
noise. Here, key findings are presented; a full description of the
methods and extended results can be found in supplementary
material.

Simulation Methods

We simulated an adjacency tensor Rsim based on a weighted
combination of “true” connectivity (Ssim) and interference (Isim). To
generate Ssim, four spatially distinct networks were constructed
based on a previous study (Brookes et al., 2015). The spatial pat-
terns of connectivity, reflecting visual, sensorimotor, superior
frontal and fronto-parietal networks, were each represented by an
Please cite this article as: O’Neill, G.C., et al., Measurement of dynamic
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adjacency matrix; 3D visualisations are shown in Fig. A1B. A
timecourse of connectivity for each network was also generated;
these comprised 60 minutes of periodically occurring Hanning
windows. Amplitudes were set to 0.45, the full width half max-
imum was 6 seconds, and onsets were set to the 3rd, 18th, 33rd
and 48th second of every minute. A single trial was defined as
1 minute in length. The trial averaged simulated data are shown in
Fig. A1A (left hand panel). The timecourses were multiplied by
their respective network adjacency matrices to create Ssim. The
interference tensor, Isim was generated by source reconstructing
60 minutes of recorded empty room MEG data onto a simulated
brain geometry, and measuring amplitude envelope connectivity
as described in our methods section. This generated structured
(but spurious) networks of inference. Both Ssim and Ssim were
sampled at 2 Hz to reflect the analysis pipeline described above.
The two tensors were combined thus,
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where SNR represents the effective signal to interference ratio of
the simulated data (see supplementary material for details).

In order to test the effectiveness of ICA at extracting the net-
work time courses in the presence of interference, the SNR para-
meter was allowed to vary and a temporal figure of merit derived
to characterise how well a single component represents a simu-
lated time course. This was defined as the correlation between a
simulated network and its best matching independent component,
minus the mean correlations between the reconstructed time-
course and all other simulated components. This value ranges
between 0 and 1. Note that the figure of merit penalises both poor
representation and degeneracy, i.e. a low value is computed if a
single component represents multiple simulated networks.
Simulation Results

Fig. A1A shows the trial averaged independent components from of
4 out of 7 reconstructed components. The associated spatial patterns
are shown in Fig. A1B. Note strong temporal and spatial resemblance
to the simulated connectivity which is also reflected by figure of merit
scores of 0.84, 0.91, 0.84 and 0.94 for the 4 simulated networks. Fig.
A1C shows the results of varying the SNR of the simulated data be-
tween 0 and 2.5 in steps of 0.02. 10 simulations were run for each SNR
value. As would be expected, at high SNR the figure of merit scores are
high, meaning that our simulated networks are reconstructed faith-
fully. However, a sharp transition below a minimum ‘threshold’ SNR is
observed below which simulated networks are irretrievable. Interest-
ingly, a different threshold value can be observed clearly for each
network, and this relates to the number of connections which exist in
a network; the more connections present, the lower the SNR that can
be tolerated. This is reflected in Fig. A1D, where the threshold (defined
as the SNR which generates a figure of merit score of 0.5) is plotted
against the Frobenius norm of the network adjacency matrices (which
here indirectly represents number of connections). Fig. A1D shows
clearly that SNR is a monotonically decreasing function of norm,
making the important point that networks with large spatial extent
(lots of connections) can be reconstructed using lower SNR data. In
other words, our method will preferentially reconstruct networks with
larger spatial extent; future applications of this method should bear
this potential confound in mind.
task related functional networks using MEG. NeuroImage (2016),
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Fig. A1. Simulation results. A) The trial averaged simulated timecourses (left) and the trial averaged independent components (right) (SNR ¼ 3). B) 3D visualisations of the
simulated (top) and ICA reconstructed (bottom) network topographies (top row). C) Temporal figure of merit scores plotted as a function of SNR for all 4 simulated networks.
Note that accurate reconstructions are observed whilst SNR is above a critical threshold level; threshold differs for each network. D) The relation between SNR threshold
(defined as when the figure of merit falls below 0.5) and Frobenius norm of the network adjacency matrix. Note that networks with a larger number of connections fare
better in low SNR conditions.
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Appendix A. Supporting information

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.neuroimage.2016.
08.061.
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