23 research outputs found

    Dependence of the average spatial and energy characteristics of the hadron-lepton cascade on the strong interaction parameters at superhigh energies

    Get PDF
    A method for calculating the average spatial and energy characteristics of hadron-lepton cascades in the atmosphere is described. The results of calculations for various strong interaction models of primary protons and nuclei are presented. The sensitivity of the experimentally observed extensive air showers (EAS) characteristics to variations of the elementary act parameters is analyzed

    Experimental Investigation of the Nature of the Knee in the Primary Cosmic Ray Energy Spectrum with the GAMMA experiment

    Full text link
    We present preliminary results obtained by a novel difference method for the study of the nature of the knee in the energy spectrum of the primary cosmic radiation. We have applied this method to data from the GAMMA experiment in Armenia. The analysis provides evidence for the possible existence of a nearby source of primary cosmic rays in the Southern hemisphere.Comment: 17 pages, 5 figure

    EAS muon distributions and primary mass composition from the GAMMA installation

    Get PDF
    Abstract The phenomenological characteristics of the muon component of extensive air showers with energies 10 6 −10 7 GeV are obtained with the GAMMA installation at Mt. Aragats in Armenia, (3200m a.s.l., 700 g.cm −2 ). The experimental results are compared with the simulation carried out using the CORSIKA code. A new selection parameter is analysed for an unbiased determination of the primary mass composition

    A study on the sharp knee and fine structures of cosmic ray spectra

    Full text link
    The paper investigates the overall and detailed features of cosmic ray (CR) spectra in the knee region using the scenario of nuclei-photon interactions around the acceleration sources. Young supernova remnants can be the physical realities of such kind of CR acceleration sites. The results show that the model can well explain the following problems simultaneously with one set of source parameters: the knee of CR spectra and the sharpness of the knee, the detailed irregular structures of CR spectra, the so-called "component B" of Galactic CRs, and the electron/positron excesses reported by recent observations. The coherent explanation serves as evidence that at least a portion of CRs might be accelerated at the sources similar to young supernova remnants, and one set of source parameters indicates that this portion mainly comes from standard sources or from a single source.Comment: 13 pages, 4 figures, accepted for publication in SCIENCE CHINA Physics, Mechanics & Astronomy

    All-particle primary energy spectrum in the 3-200 PeV energy range

    Full text link
    We present all-particle primary cosmic-ray energy spectrum in the 3-200 PeV energy range obtained by a multi-parametric event-by-event evaluation of the primary energy. The results are obtained on the basis of an expanded EAS data set detected at mountain level (700 g/cm^2) by the GAMMA experiment. The energy evaluation method has been developed using the EAS simulation with the SIBYLL interaction model taking into account the response of GAMMA detectors and reconstruction uncertainties of EAS parameters. Nearly unbiased (<5%) energy estimations regardless of a primary nuclear mass with an accuracy of about 15-10% in the 3-200 PeV energy range respectively are attained. An irregularity ('bump') in the spectrum is observed at primary energies of ~74 PeV. This bump exceeds a smooth power-law fit to the data by about 4 standard deviations. Not rejecting stochastic nature of the bump completely, we examined the systematic uncertainties of our methods and conclude that they cannot be responsible for the observed feature.Comment: Accepted by J.Phys.G: Nucl.Part.Phy

    The spectrum of high-energy cosmic rays measured with KASCADE-Grande

    Get PDF
    The energy spectrum of cosmic rays between 10**16 eV and 10**18 eV, derived from measurements of the shower size (total number of charged particles) and the total muon number of extensive air showers by the KASCADE-Grande experiment, is described. The resulting all-particle energy spectrum exhibits strong hints for a hardening of the spectrum at approximately 2x10**16 eV and a significant steepening at c. 8x10**16 eV. These observations challenge the view that the spectrum is a single power law between knee and ankle. Possible scenarios generating such features are discussed in terms of astrophysical processes that may explain the transition region from galactic to extragalactic origin of cosmic rays.Comment: accepted by Astroparticle Physics June 201

    All-particle cosmic ray energy spectrum measured with 26 IceTop stations

    Full text link
    We report on a measurement of the cosmic ray energy spectrum with the IceTop air shower array, the surface component of the IceCube Neutrino Observatory at the South Pole. The data used in this analysis were taken between June and October, 2007, with 26 surface stations operational at that time, corresponding to about one third of the final array. The fiducial area used in this analysis was 0.122 km^2. The analysis investigated the energy spectrum from 1 to 100 PeV measured for three different zenith angle ranges between 0{\deg} and 46{\deg}. Because of the isotropy of cosmic rays in this energy range the spectra from all zenith angle intervals have to agree. The cosmic-ray energy spectrum was determined under different assumptions on the primary mass composition. Good agreement of spectra in the three zenith angle ranges was found for the assumption of pure proton and a simple two-component model. For zenith angles {\theta} < 30{\deg}, where the mass dependence is smallest, the knee in the cosmic ray energy spectrum was observed between 3.5 and 4.32 PeV, depending on composition assumption. Spectral indices above the knee range from -3.08 to -3.11 depending on primary mass composition assumption. Moreover, an indication of a flattening of the spectrum above 22 PeV were observed.Comment: 38 pages, 17 figure

    Energy spectra and elemental composition of primary nuclei in the knee region: Recent results from the GAMMA experiment

    No full text
    On the basis of the extensive air shower (EAS) data obtained by the GAMMA experiment, the energy spectra and elemental composition of the primary cosmic rays are derived in the 1 - 100 PeV energy range. The reconstruction of the primary energy spectra is carried out using an EAS inverse approach with the hypothesis of power-law primary energy spectra with rigidity-dependent knees. The rigidity- dependent knee feature of the primary energy spectra is displayed at the rigidities ER similar or equal to 2.5 +/- 0.2 PeV/Z and ER similar or equal to 3.1 - 4.2 PeV/Z for the SIBYLL and QGSJET interaction models respectively.;Using the event-by-event method of the primary energy evaluation from the measured N-ch, N-mu and shower age (s) parameters, the all-particle energy spectrum is also obtained
    corecore