16 research outputs found

    Evapotranspiration partition using the multiple energy balance version of the ISBA-A-gs land surface model over two irrigated crops in a semi-arid Mediterranean region (Marrakech, Morocco)

    Get PDF
    The main objective of this work is to question the representation of the energy budget in soil–vegetation–atmosphere transfer (SVAT) models for the prediction of the turbulent fluxes in the case of irrigated crops with a complex structure (row) and under strong transient hydric regimes due to irrigation. To this end, the Interaction between Soil, Biosphere, and Atmosphere (ISBA-A-gs) is evaluated at a complex open olive orchard and, for the purposes of comparison, on a winter wheat field taken as an example of a homogeneous canopy. The initial version of ISBA-A-gs, based on a composite energy budget (hereafter ISBA-1P for one patch), is compared to the new multiple energy balance (MEB) version of ISBA that represents a double source arising from the vegetation located above the soil layer. In addition, a patch representation corresponding to two adjacent, uncoupled source schemes (hereafter ISBA-2P for two patches) is also considered for the olive orchard. Continuous observations of evapotranspiration (ET), with an eddy covariance system and plant transpiration (Tr) with sap flow and isotopic methods were used to evaluate the three representations. A preliminary sensitivity analyses showed a strong sensitivity to the parameters related to turbulence in the canopy introduced in the new ISBA–MEB version. For wheat, the ability of the single- and dual-source configuration to reproduce the composite soil–vegetation heat fluxes was very similar; the root mean square error (RMSE) differences between ISBA-1P, ISBA-2P and ISBA–MEB did not exceed 10 W m−2 for the latent heat flux. These results showed that a composite energy balance in homogeneous covers is sufficient to reproduce the total convective fluxes. The two configurations are also fairly close to the isotopic observations of transpiration in spite of a light underestimation (overestimation) of ISBA-1P (ISBA–MEB). At the olive orchard, contrasting results are obtained. The dual-source configurations, including both the uncoupled (ISBA-2P) and the coupled (ISBA–MEB) representations, outperformed the single-source version (ISBA-1P), with slightly better results for ISBA–MEB in predicting both total heat fluxes and evapotranspiration partition. Concerning plant transpiration in particular, the coupled approach ISBA–MEB provides better results than ISBA-1P and, to a lesser extent, ISBA-2P with RMSEs of 1.60, 0.90, and 0.70 mm d−1 and R2 of 0.43, 0.69, and 0.70 for ISBA-1P, ISBA-2P and ISBA–MEB, respectively. In addition, it is shown that the acceptable predictions of composite convective fluxes by ISBA-2P for the olive orchard are obtained for the wrong reasons as neither of the two patches is in agreement with the observations because of a bad spatial distribution of the roots and a lack of incoming radiation screening for the bare soil patch. This work shows that composite convection fluxes predicted by the SURFace EXternalisĂ©e (SURFEX) platform and the partition of evapotranspiration in a highly transient regime due to irrigation is improved for moderately open tree canopies by the new coupled dual-source ISBA–MEB model. It also points out the need for further local-scale evaluations on different crops of various geometry (more open rainfed agriculture or a denser, intensive olive orchard) to provide adequate parameterisation to global database, such as ECOCLIMAP-II, in the view of a global application of the ISBA–MEB model

    Uncertainty assessment of surface net radiation derived from Landsat images

    Get PDF
    The net radiation flux available at the Earth's surface drives evapotranspiration, photosynthesis and other physical and biological processes. The only cost-effective way to capture its spatial and temporal variability at regional and global scales is remote sensing. However, the accuracy of net radiation derived from remote sensing data has been evaluated up to now over a limited number of in situ measurements and ecosystems. This study aims at evaluating estimates and uncertainties on net radiation derived from Landsat-7 images depending on reliability of the input surface variables albedo, emissivity and surface temperature. The later includes the reliability of remote sensing information (spectral reflectances and top of canopy brightness temperature) and shortwave and longwave incoming radiations. Primary information describing the surface is derived from remote sensing observations. Surface albedo is estimated from spectral reflectances using a narrow-to-broadband conversion method. Land surface temperature is retrieved from top of canopy brightness temperature by accounting for land surface emissivity and reflection of atmospheric radiation; and emissivity is estimated using a relationship with a vegetation index and a spectral database of soil and plant canopy properties in the study area. The net radiation uncertainty is assessed using comparison with ground measurements over the Crau–Camargue and lower Rhone valley regions in France. We found Root Mean Square Errors between retrievals and field measurements of 0.25–0.33 (14–19%) for albedo, ~ 1.7 K for surface temperature and ~ 20 W·m− 2 (5%) for net radiation. Results show a substantial underestimation of Landsat-7 albedo (up to 0.024), particularly for estimates retrieved using the middle infrared, which could be due to different sources: the calibration of field sensors, the correction of radiometric signals from Landsat-7 or the differences in spectral bands with the sensors for which the models where originally derived, or the atmospheric corrections. We report a global uncertainty in net radiation of 40–100 W·m− 2 equally distributed over the shortwave and longwave radiation, which varies spatially and temporally depending on the land use and the time of year. In situ measurements of incoming shortwave and longwave radiation contribute the most to uncertainty in net radiation (10–40 W·m− 2 and 20–30 W·m− 2, respectively), followed by uncertainties in albedo (< 25 W·m− 2) and surface temperature (~ 8 W·m− 2). For the latter, the main factors were the uncertainties in top of canopy reflectances (< 10 W·m− 2) and brightness temperature (5–7 W·m− 2). The generalization of these results to other sensors and study regions could be considered, except for the emissivity if prior knowledge on its characterization is not available

    Infiltration from the pedon to global grid scales: an overview and outlook for land surface modelling

    Get PDF
    Infiltration in soils is a key process that partitions precipitation at the land surface in surface runoff and water that enters the soil profile. We reviewed the basic principles of water infiltration in soils and we analyzed approaches commonly used in Land Surface Models (LSMs) to quantify infiltration as well as its numerical implementation and sensitivity to model parameters. We reviewed methods to upscale infiltration from the point to the field, hill slope, and grid cell scale of LSMs. Despite the progress that has been made, upscaling of local scale infiltration processes to the grid scale used in LSMs is still far from being treated rigorously. We still lack a consistent theoretical framework to predict effective fluxes and parameters that control infiltration in LSMs. Our analysis shows, that there is a large variety in approaches used to estimate soil hydraulic properties. Novel, highly resolved soil information at higher resolutions than the grid scale of LSMs may help in better quantifying subgrid variability of key infiltration parameters. Currently, only a few land surface models consider the impact of soil structure on soil hydraulic properties. Finally, we identified several processes not yet considered in LSMs that are known to strongly influence infiltration. Especially, the impact of soil structure on infiltration requires further research. In order to tackle the above challenges and integrate current knowledge on soil processes affecting infiltration processes on land surface models, we advocate a stronger exchange and scientific interaction between the soil and the land surface modelling communities

    Natalizumab treatment shows low cumulative probabilities of confirmed disability worsening to EDSS milestones in the long-term setting.

    Get PDF
    Abstract Background Though the Expanded Disability Status Scale (EDSS) is commonly used to assess disability level in relapsing-remitting multiple sclerosis (RRMS), the criteria defining disability progression are used for patients with a wide range of baseline levels of disability in relatively short-term trials. As a result, not all EDSS changes carry the same weight in terms of future disability, and treatment benefits such as decreased risk of reaching particular disability milestones may not be reliably captured. The objectives of this analysis are to assess the probability of confirmed disability worsening to specific EDSS milestones (i.e., EDSS scores ≄3.0, ≄4.0, or ≄6.0) at 288 weeks in the Tysabri Observational Program (TOP) and to examine the impact of relapses occurring during natalizumab therapy in TOP patients who had received natalizumab for ≄24 months. Methods TOP is an ongoing, open-label, observational, prospective study of patients with RRMS in clinical practice. Enrolled patients were naive to natalizumab at treatment initiation or had received ≀3 doses at the time of enrollment. Intravenous natalizumab (300 mg) infusions were given every 4 weeks, and the EDSS was assessed at baseline and every 24 weeks during treatment. Results Of the 4161 patients enrolled in TOP with follow-up of at least 24 months, 3253 patients with available baseline EDSS scores had continued natalizumab treatment and 908 had discontinued (5.4% due to a reported lack of efficacy and 16.4% for other reasons) at the 24-month time point. Those who discontinued due to lack of efficacy had higher baseline EDSS scores (median 4.5 vs. 3.5), higher on-treatment relapse rates (0.82 vs. 0.23), and higher cumulative probabilities of EDSS worsening (16% vs. 9%) at 24 months than those completing therapy. Among 24-month completers, after approximately 5.5 years of natalizumab treatment, the cumulative probabilities of confirmed EDSS worsening by 1.0 and 2.0 points were 18.5% and 7.9%, respectively (24-week confirmation), and 13.5% and 5.3%, respectively (48-week confirmation). The risks of 24- and 48-week confirmed EDSS worsening were significantly higher in patients with on-treatment relapses than in those without relapses. An analysis of time to specific EDSS milestones showed that the probabilities of 48-week confirmed transition from EDSS scores of 0.0–2.0 to ≄3.0, 2.0–3.0 to ≄4.0, and 4.0–5.0 to ≄6.0 at week 288 in TOP were 11.1%, 11.8%, and 9.5%, respectively, with lower probabilities observed among patients without on-treatment relapses (8.1%, 8.4%, and 5.7%, respectively). Conclusions In TOP patients with a median (range) baseline EDSS score of 3.5 (0.0–9.5) who completed 24 months of natalizumab treatment, the rate of 48-week confirmed disability worsening events was below 15%; after approximately 5.5 years of natalizumab treatment, 86.5% and 94.7% of patients did not have EDSS score increases of ≄1.0 or ≄2.0 points, respectively. The presence of relapses was associated with higher rates of overall disability worsening. These results were confirmed by assessing transition to EDSS milestones. Lower rates of overall 48-week confirmed EDSS worsening and of transitioning from EDSS score 4.0–5.0 to ≄6.0 in the absence of relapses suggest that relapses remain a significant driver of disability worsening and that on-treatment relapses in natalizumab-treated patients are of prognostic importance

    Evaluation of land surface model simulations of evapotranspiration over a 12 year crop succession: impact of the soil hydraulic properties

    No full text
    Evapotranspiration has been recognized as one of the most uncertain term in the surface water balance simulated by land surface models. In this study, the SURFEX/ISBAA- gs simulations of evapotranspiration are assessed at local scale over a 12 year 5 Mediterranean crop succession. The model is evaluated in its standard implementation which relies on the use of the ISBA pedotransfer estimates of the soil properties. The originality of this work consists in explicitly representing the succession of crop cycles and inter-crop bare soil periods in the simulations and assessing its impact on the dynamic of simulated and measured evapotranspiration over a long period of time. 10 The analysis focuses on key soil parameters which drive the simulation of evapotranspiration, namely the rooting depth, the soil moisture at saturation, the soil moisture at field capacity and the soil moisture at wilting point. The simulations achieved with the standard values of these parameters are compared to those achieved with the in situ values. The portability of the ISBA pedotransfer functions is evaluated over a typical 15 Mediterranean crop site. Various in situ estimates of the soil parameters are considered and distinct parametrization strategies are tested to represent the evapotranspiration dynamic over the crop succession. This work shows that evapotranspiration mainly results from the soil evaporation when it is continuously simulated over a Mediterranean crop succession. The evapo20 transpiration simulated with the standard surface and soil parameters of the model is largely underestimated. The deficit in cumulative evapotranspiration amounts to 24% over 12 years. The bias in daily daytime evapotranspiration is −0.24mmday−1. The ISBA pedotransfer estimates of the soil moisture at saturation and at wilting point are overestimated which explains most of the evapotranspiration underestimation. The 25 overestimation of the soil moisture at wilting point causes the underestimation of transpiration at the end of the crop cycles. The overestimation of the soil moisture at saturation triggers the underestimation of the soil evaporation during the wet soil periods. The use of field capacity values derived from laboratory retention measurements leads to inaccurate simulation of soil evaporation due to the lack of representativeness of the soil structure variability at the field scale. The most accurate simulation is achieved with the values of the soil hydraulic properties derived from field measured soil moisture. Their temporal analysis over each crop cycle provides meaningful estimates of the 5 wilting point, the field capacity and the rooting depth to represent the crop water needs and accurately simulate the evapotranspiration over the crop succession. We showed that the uncertainties in the eddy-covariance measurements are significant and can explain a large part of the unresolved random differences between the simulations and the measurements of evapotranspiration. Other possible model shortcomings include 10 the lack of representation of soil vertical heterogeneity and root profile along with inaccurate energy balance partitioning between the soil and the vegetation at low LAI

    The French ICOS ecosystems stations : an overview

    No full text
    National audienceThe terrestrial biosphere interacts strongly with the climate, providing both positive and negative feedbacks due to biogeophysical and biogeochemical processes. To understand and predict the evolution of the climate, it is critical to understand both the contribution of vegetation to the greenhouse gases (GHG) budget and the response of the terrestrial biosphere to the changing climate. The Integrated Carbon Observation System (ICOS), a new European monitoring network, offers a unique way of documenting and quantifying long term changes in the GHG balance of ecosystems. The ICOS research infrastructure includes atmospheric, ecosystem and marine station networks. The Ecosystem station network (ESN) of ICOS is based on a large number of monitoring stations that will be maintained for the next 20 years. The ESN uses a large set of standardised instruments to perform continuous and intensive measurements of meteorological and micrometeorological variables. A central part of this measurement set is the eddy covariance measurement, that allows a continuous monitoring of the flux exchanged between vegetation and atmosphere. All together these standardised observations allow a better understanding of the functioning of ecosystems in relation to climate and management practices. ICOS Ecosystems France, the French part of ESN is a cooperation of three research institutes: INRA, CNRS and ANDRA. ICOS Ecosystems France is extensive and includes eight observation stations ( 4 Class 1, 4 Class 2). In addition seven associated stations also contribute to the network. The network samples a wide range of ecosystems (forest, crop and grassland), of management practices and climates (from cold mountain climate to tropical humid in Guyana, including wet oceanic and dry Mediterranean climate). We will provide an overview of the stations and the measurement system (sensors and data flow). We will equally present the current status of the network, recent measurements and preliminary findings
    corecore