
 
 

 
 

 

 

 
 
 
 

 

Article (refereed) - postprint 
 
 
 

 

Mira, Maria; Olioso, Albert; Gallego-Elvira, Belen; Courault, Dominique; 
Garrigues, Sebastien; Marloie, Olivier; Hagolle, Olivier; Guillevic, Pierre; 
Boulet, Gilles. 2016. Uncertainty assessment of surface net radiation 
derived from Landsat images. 

 

 
 

© 2016 Elsevier Inc. 
This manuscript version is made available under the CC-BY-NC-ND 4.0 
license http://creativecommons.org/licenses/by-nc-nd/4.0/ 

 
 
 

This version available  http://nora.nerc.ac.uk/512660/ 
 

 
 

NERC has developed NORA to enable users to access research outputs 
wholly or partially funded by NERC. Copyright and other rights for material 
on this site are retained by the rights owners. Users should read the terms 
and conditions of use of this material at 
http://nora.nerc.ac.uk/policies.html#access 

 

 
 

NOTICE: this is the author’s version of a work that was accepted for 
publication in Remote Sensing of Environment. Changes resulting from the 
publishing process, such as peer review, editing, corrections, structural 
formatting, and other quality control mechanisms may not be reflected in this 
document. Changes may have been made to this work since it was 
submitted for publication. A definitive version was subsequently published in 

Remote Sensing of Environment, 175. 251-270. 10.1016/j.rse.2015.12.054 
 

www.elsevier.com/ 
 
 
 

Contact CEH NORA team at 

noraceh@ceh.ac.uk 
 

 
The NERC and CEH trademarks and logos (‘the Trademarks’) are registered trademarks of NERC in the UK and 
other countries, and may not be used without the prior written consent of the Trademark owner. 

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://nora.nerc.ac.uk/512660/
http://nora.nerc.ac.uk/policies.html#access
http://dx.doi.org/10.1016/j.rse.2015.12.054
http://www.elsevier.com/
mailto:noraceh@ceh.ac.uk


 1 
 

Uncertainty assessment of surface net radiation derived from Landsat images 1 

 2 

Maria Mira
1,2,3

, Albert Olioso
1,2

, Belén Gallego-Elvira
4
, Dominique Courault

1,2
, Sébastien 3 

Garrigues
1,2

, Olivier Marloie
5
, Olivier Hagolle

6
, Pierre Guillevic

7
 and Gilles Boulet

6 
4 

 5 

(1)
 INRA (French National Institute for Agricultural Research), UMR 1114 EMMAH, 84914 6 

Avignon cedex 9, France 7 

(2)
 UAPV (Université d’Avignon et des Pays de Vaucluse), UMR 1114 EMMAH, 84000 8 

Avignon, France 9 

 (3)
 Grumets research group, Department of Geography, Universitat Autònoma de 10 

Barcelona (UAB), 08193 Bellaterra, Catalonia, Spain 11 

(4)
 NERC Centre for Ecology and Hydrology, Wallingford, Oxfordshire OX10 8BB, United 12 

Kingdom 13 

(5)
 INRA (French National Institute for Agricultural Research), UR 0629 URFM, 84914 14 

Avignon, France 15 

 (6) 
CESBIO, BPI 811, 18 Avenue E. Berlin, 31401 Toulouse Cedex 9, France 16 

(7)
 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, 17 

Pasadena, CA 91109 18 

 19 

Maria.Mira@uab.cat 20 

  21 

*Revised Manuscript with no Changes Highlighted



 2 
 

ABSTRACT 22 

The net radiation flux available at the Earth's surface drives evapotranspiration, 23 

photosynthesis and other physical and biological processes. The only cost-effective way to 24 

capture its spatial and temporal variability at regional and global scales is remote sensing. 25 

However, the accuracy of net radiation derived from remote sensing data has been 26 

evaluated up to now over a limited number of in situ measurements and ecosystems. This 27 

study aims at evaluating estimates and uncertainties on net radiation derived from Landsat-28 

7 images depending on reliability of the input surface variables albedo, emissivity and 29 

surface temperature. The later includes the reliability of remote sensing information 30 

(spectral reflectances and top of canopy brightness temperature) and shortwave and 31 

longwave incoming radiations. 32 

Primary information describing the surface is derived from remote sensing 33 

observations. Surface albedo is estimated from spectral reflectances using a narrow-to-34 

broadband conversion method. Land surface temperature is retrieved from top of canopy 35 

brightness temperature by accounting for land surface emissivity and reflection of 36 

atmospheric radiation; and emissivity is estimated using a relationship with a vegetation 37 

index and a spectral database of soil and plant canopy properties in the study area. The net 38 

radiation uncertainty is assessed using comparison with ground measurements over the 39 

Crau-Camargue and lower Rhone valley regions in France. We found Root Mean Square 40 

Errors between retrievals and field measurements of 0.25–0.33 (14–19 %) for albedo, ~1.7 41 

K for surface temperature and ~20 Wm
-2

 (5 %) for net radiation. Results show a substantial 42 

underestimation of Landsat-7 albedo (up to 0.024), particularly for estimates retrieved 43 

using the middle infrared, which could be due to different sources: the calibration of field 44 

sensors, the correction of radiometric signals from Landsat-7 or the differences in spectral 45 
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bands with the sensors for which the models where originally derived, or the atmospheric 46 

corrections. We report a global uncertainty in net radiation of 40–100 Wm
-2

 equally 47 

distributed over the shortwave and longwave radiation, which varies spatially and 48 

temporally depending on the land use and the time of year. In situ measurements of 49 

incoming shortwave and longwave radiation contribute the most to uncertainty in net 50 

radiation (10–40 Wm
-2

 and 20–30 Wm
-2

, respectively), followed by uncertainties in albedo 51 

(<25 Wm
-2

) and surface temperature (~8 Wm
-2

). For the latter, the main factors were the 52 

uncertainties in top of canopy reflectances (<10 Wm
-2

) and brightness temperature (5–7 53 

Wm
-2

). The generalization of these results to other sensors and study regions could be 54 

considered, except for the emissivity if prior knowledge on its characterization is not 55 

available.  56 

 57 

Keywords: uncertainty analysis, net radiation, surface temperature, albedo, emissivity, 58 

Landsat, regional scale, temporal course 59 

 60 

1. Introduction 61 

Accurate characterization of the land surface energy balance is fundamental in 62 

climate studies for understanding the partitioning of energy and water at the Earth surface. 63 

It is also required at finer scales for evapotranspiration monitoring in irrigation 64 

management and water resources planning. Net radiation is the main driver of surface 65 

energy balance and evapotranspiration. It expresses the balance of radiative energy at the 66 

Earth surface and thus the available energy for exchanges of sensible and latent heat fluxes 67 

between the surface and the atmosphere. Net radiation (Rn) depends on several land surface 68 
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parameters and variables, including surface albedo (α), surface emissivity (ε) and surface 69 

temperature (Ts) which are changing in space and time under the influences of the type of 70 

land use, water availability and incoming radiation. At the instantaneous scale, net radiation 71 

can be expressed as: 72 

    (1) 73 

where σ is the Stefan-Boltzmann constant, RSW
↓
 the solar irradiance (or incoming shortwave 74 

irradiance), and RLW
↓
 the atmospheric irradiance (or incoming longwave irradiance). 75 

Remote sensing is the only methodology which makes it possible to assess the spatial 76 

distribution of land surface variables at regional scale in a cost-effective way. The main 77 

sensors which were available in the last decades for assessing energy balance at a relatively 78 

fine spatial resolution (~100 m) and on an operational basis were Thematic Mapper (TM) 79 

and Enhanced Thematic Mapper Plus (ETM+) on board of the Landsat satellites 5 and 7. 80 

As these sensors were in flight for long periods of time (Landsat 5 for almost 29 years and 81 

Landsat 7 for 14 years), they may be used to assess the impact of evolution in land use and 82 

climate on net radiation and surface energy balance. The scientific community has 83 

recognized the potential interest of the follow-up of Landsat missions (see Anderson et al. 84 

(2012)). The development of new satellite systems with improved performances, in 85 

particular in the thermal infrared bands, either in terms of radiometric resolution and 86 

accuracy, spatial resolution and revisiting time are also undergoing, for instance HyspIRI 87 

(Abrams and Hook 2013), MISTIGRI (Lagouarde et al. 2013) or THIRSTY (Crebassol et 88 

al. 2014). In parallel, there is an increased interest in the development of standardized 89 

remote sensing products that facilitate the use of remote sensing data for the various user 90 

communities. This is already well developed for low resolution sensors with products such 91 
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as surface temperature, surface spectral reflectances, albedo, or Leaf Area Index (e.g., for 92 

Moderate-Resolution Imaging Spectroradiometer (MODIS), SPOT-VEGETATION or 93 

PROBA-V sensors). The use of these products has made it possible strong progresses in 94 

global water and carbon cycle studies and monitoring the impact of recent climate 95 

evolutions over land (e.g., Ciais et al. (2005), Tang et al. (2014), Xia et al. (2014)). The 96 

development of similar products for Earth Observation satellites at higher resolution is in 97 

project with the supply of new services for distributing ready-to-use information to the user 98 

community. Evidence of this is a data center dedicated to land surfaces named THEIA 99 

which has started to operate in 2014 in France (Hagolle et al. 2015; WWW1). It is a French 100 

national inter-agency organization designed to foster the use of images coming from the 101 

space observation of land surfaces. Within the Land Data Centre, the French Space Agency 102 

CNES set up a production center named MUSCATE (WWW2) which aims to provide 103 

operational products derived from time series of images acquired by Landsat, SPOT and 104 

Formosat-2 and later by the future satellites Sentinel-2 and Venµs (L'Helguen et al. (2014); 105 

Leroy et al. (2014); Hagolle et al. (2015)). Concerning Landsat, the data presently available 106 

consist in Top Of Canopy (TOC) spectral reflectances, together with a cloud mask, and Top 107 

Of Atmosphere (TOA) brightness temperatures. Work is undergoing for the production of 108 

TOC brightness temperature and surface temperature (Rivalland et al. 2014).  109 

The main advantages of using land surface products result from 1) the availability of 110 

information that can be used in applications without requiring a strong expertise in the 111 

preprocessing of remote sensing images (e.g., georeferencing, atmospheric corrections and 112 

retrieval of biophysical variables), 2) the standardization of data processing and data quality 113 

management, 3) the improvement in data documentation and metadata, and 4) the 114 

community use of the data which enhances feedback on their quality and use. It is 115 
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important that the definition of land surface products takes into account the user needs in 116 

order to provide higher level of requirement definition and feedbacks. 117 

The accuracy of surface net radiation information derived from remote sensing data 118 

has been evaluated, in particular in the frame of evapotranspiration estimation and 119 

mapping. Root Mean Square Errors (RMSE) between remote sensing retrievals and field 120 

data were found typically in a 20 to 80 Wm
-2

 range (e.g., Jacob et al. (2002a); Tang et al. 121 

(2011); Merlin et al. (2014); Wang et al. (2014)). However, these analyses compared 122 

remote estimates to a limited number of in situ measurements over specific ecosystems. 123 

Few studies have dealt with the impact of uncertainties in the derivation of the surface 124 

variables required to map surface net radiation products and associated uncertainties  (e.g., 125 

Bhattacharya et al. (2010); Tang et al. (2011); Cheng et al. (2013); Mattar et al. (2014)). 126 

The performance of the algorithms used to estimate variables in order to derive net 127 

radiation, such as albedo, surface temperature and emissivity needs to be evaluated.  128 

The objective of this study is to assess the uncertainties in surface net radiation 129 

estimates due to uncertainties in the derivation of surface albedo, surface emissivity and 130 

surface temperature from pre-operational remote sensing products, as well as uncertainties 131 

in atmospheric information and incoming radiations. We focused on the derivation of 132 

albedo, emissivity and surface temperature from Landsat-7 products provided by the 133 

THEIA Land Data Centre. The analysis was performed over the lower Rhône Valley 134 

region, South Eastern France, where a dense network of ground stations measuring surface 135 

energy balance components and meteorological variables was set up on various surfaces for 136 

several years. The methodology and data are presented in Section 2. Results are presented 137 

in Section 3 and discussed in Section 4, respectively. 138 
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2. Materials and methods 139 

2.1. Background and definitions 140 

Surface albedo is a dimensionless characteristic of the soil-plant canopy system 141 

which represents the fraction of solar energy reflected by the surface. It is expressed as the 142 

ratio of the radiant energy scattered upward by a surface in all directions, compared to that 143 

received from all directions, integrated over the wavelengths of the solar spectrum (Pinty 144 

and Verstraete 1992). Sellers et al. (1995) suggested that an absolute accuracy of 0.02 is 145 

required for climate modeling. The latter corresponds to a typical accuracy on monthly 146 

averaged reflected solar irradiance at the satellite overpass of 10 Wm
-2

. It is expected that 147 

the estimation of albedo from multispectral remote sensing can reach these requirements. 148 

When considering instantaneous flux, a simple calculation shows that an absolute accuracy 149 

of 0.02 (roughly equivalent to 10 % error in albedo for agricultural landscape) corresponds 150 

to a relative accuracy on net radiation of around 5 %. As shown in Jacob et al. (2002a) in 151 

the context of mapping evapotranspiration, this accuracy may result in an absolute error of 152 

20 Wm
-2

 in net radiation (RMSE established over 16 days with remote sensing acquisition 153 

over 6 months and 3 to 5 ground measurements of net radiation).  154 

The most classical approach to derive albedo from multispectral remote sensing is the 155 

Narrow-To-Broadband (NTB) conversion method (e.g., Brest and Goward (1987); Ranson 156 

et al. (1991); Weiss et al. (1999); Liang (2000); Jacob et al. (2002b); Jacob et al. (2002c)). 157 

This method considers that it is possible to integrate the surface reflectance obtained in the 158 

spectral bands provided by visible – near infrared – middle infrared sensors through a linear 159 

combination to represent the whole solar domain.  160 
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Surface emissivity is defined as the ratio between the emission of the Earth surface 161 

and the emission of a black body at the same thermodynamic (or kinetic) temperature 162 

(Norman and Becker 1995). When considering the calculation of net radiation, the 163 

knowledge of emissivity over the whole spectral range of thermal radiation is required to 164 

compute emission of radiation from the surface (surface temperature term). In Eq. (1), the 165 

emissivity is also required for computing the absorption of atmospheric radiation. The 166 

equivalence between the coefficient of absorption and the emissivity considers that the 167 

Kirchhoff’s law of thermal radiation applies, which supposes that the land surface is 168 

isothermal. The accuracy of emissivity is directly transmitted into the accuracy of the 169 

emission term in the net radiation equation, but this impact is partially cancelled out by the 170 

absorption term. An uncertainty of 0.1 in surface emissivity roughly corresponds to an 171 

uncertainty of 15 to 20 Wm
-2

 in net radiation (Ogawa and Schmugge 2004), which is in the 172 

same order as the uncertainty due to albedo presented above.  173 

The derivation of surface emissivity from remote sensing is not straightforward. One 174 

possibility would be to map surface spectral emissivity from thermal infrared multispectral 175 

spectral sensors such as ASTER using for instance the Temperature and Emissivity 176 

Separation (TES) algorithm proposed by Gillespie et al. (1998), and then to convert the 177 

spectral values in a broadband emissivity using a NTB conversion method in a similar way 178 

to what is done to derive albedo. Ogawa and Schmugge (2004), confirmed by Cheng et al. 179 

(2013), showed that the best integration windows for representing surface emissivity for net 180 

radiation calculation would be the 8.0–13.5 µm spectral range. Since TM and ETM+ have 181 

only one thermal infrared band, it is not possible to obtain emissivity directly using 182 

methods such as the TES algorithm. An alternative method consists in using relationships 183 

with vegetation indices or reflectance measurements in the solar domain (Van de Griend 184 
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and Owe (1993); Olioso (1995b); Valor and Caselles (1996); Wittich (1997); Sobrino et al. 185 

(2001); Olioso et al. (2007); Caselles et al. (2012)). These methods were originally 186 

designed for deriving the spectral emissivity required for estimating surface temperature 187 

from thermal measurements (see next paragraph), so that they would have to be recalibrated 188 

when dealing with the surface emissivity used in net radiation calculation. 189 

Land surface temperature is closely related to the surface energy balance and to the 190 

water status of the surface. It mainly depends on the amount of radiative energy absorbed 191 

by the surface, on the partitioning of heat in sensible and latent heat flux, and on the 192 

characteristics of the atmosphere close to the ground (in particular air temperature and 193 

turbulence). Surface temperature can be derived from thermal infrared measurements. For 194 

energy balance studies an accuracy better than 1 K is required for achieving an overall 195 

accuracy on instantaneous heat flux better than 50 Wm
-2

 (Norman et al. 1995; Seguin et al. 196 

1999). However this requirement is mainly driven by the estimation of heat fluxes rather 197 

than net radiation. As a matter of fact an error of 1 K in surface temperature would result in 198 

an error around 6 Wm
-2

 for net radiation. From TM and ETM+ sensors, the possibility to 199 

reach this level of accuracy requires the knowledge of the emissivity of the surface in the 200 

spectral band of the sensor (which is different from the large band emissivity required in 201 

Eq.(1)). Olioso (1995a) showed that for a spectral emissivity of 0.94 in the TM band, errors 202 

up to 4 K or more, depending on the atmospheric conditions, would be obtained when not 203 

accounting for emissivity effect. Mira et al. (2007) observed that an emissivity variation of 204 

±0.06 causes an error of ±2.2 K in the surface temperature determination (at 11 μm and for 205 

a temperature of 300 K). As for large band emissivity above, spectral emissivity can be 206 

estimated in the TM and ETM+ thermal bands from vegetation indices or reflectances 207 

measurements. These methods provide a practical way to estimate spectral emissivity of 208 
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natural surfaces with typical errors around 1 % to 2 %. The most classical approach which 209 

relates emissivity to the Normalized Difference Vegetation Index (NDVI) was first 210 

established experimentally by Van de Griend and Owe (1993). Olioso (1995b) and Olioso 211 

et al. (2007) used experimental data and radiative transfer modeling in vegetation canopy to 212 

explore the variability of the relationship between vegetation index and spectral emissivity. 213 

They showed that leaf optical properties and soil surface emissivity were the two main 214 

sources of uncertainty. 215 

2.2. The experimental area 216 

The study region is located in the lower Rhône Valley, South Eastern France, 217 

including the Avignon area (43.92° N; 4.88° E; 32 m above sea level) and the Crau-218 

Camargue area (50 km around 43.56° N; 4.86° E; 0 to 60 m above sea level). It is mainly a 219 

flat area with very gentle slope (less than 0.5 %) which presents a wide variety of surfaces 220 

including dry and irrigated grasslands, wetlands and various crops (Fig. 1). Climate is 221 

Mediterranean, with irregular precipitations (annual cumulative precipitation range between 222 

350 mm and 1100 mm with an average of 550 mm), long dry periods in spring and 223 

summer, and strong winds.  224 

[Insert Fig. 1 about here] 225 

The area is covered by a single Landsat-7 ETM+ image. A network of ground 226 

stations was deployed over different types of ecosystems representative of the main land 227 

use in the area (Fig. 1) to monitor surface energy balance and meteorological variables. 228 

Four stations were considered in this study. In order to avoid topography effects related to 229 

the hills present in the images, pixels with an elevation higher than 100 m were masked. 230 
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2.3. Mapping land surface variables from Landsat-7 ETM+ data 231 

2.3.1. Landsat data 232 

The ETM+ (on board of Landsat-7) acquires data following a Sun synchronous orbit 233 

with a revisit interval of 16 days since 1999. Since May 2003, only the central part of the 234 

scene is easily workable, with approximately 44 km swath available (Chander et al. 2009). 235 

ETM+ measures radiances in 7 spectral bands covering the solar and the thermal domains. 236 

Instantaneous fields of view of the sensor correspond to a spatial resolution at the ground of 237 

30 m for bands 1 to 4 (visible to near infrared), 5 and 7 (middle infrared) and 60 m for band 238 

6 (thermal infrared band).  239 

Landsat data used in this study were provided as ready-to-use products by the 240 

production center named MUSCATE set up by CNES within THEIA (Hagolle et al. 2015; 241 

L'Helguen et al. 2014; WWW1). They consist in TOC spectral reflectances and TOA 242 

brightness temperatures. We also produced TOC brightness temperature as a prototyping 243 

phase of future products (Rivalland et al. 2014). The original data were downloaded from 244 

USGS (US Geological Survey) and then processed by MUSCATE. Images were corrected 245 

for geolocation, radiometric calibration and atmospheric effects according to the methods 246 

described by Baillarin et al. (2008) and Hagolle et al. (2008, 2010, 2015). Radiometric 247 

calibration was performed using the calibration coefficients provided by USGS (Chander et 248 

al. 2009). The calibration uncertainties of at-sensor spectral radiances are 5 % (Chander et 249 

al. 2009).  250 

Atmospheric corrections in the solar domain, as well as the creation of masks for 251 

clouds, cloud’s shadows, water bodies and snow surfaces were performed using the Multi-252 

sensor Atmospheric Correction and Cloud Screening (MACCS) (Hagolle et al. 2015) 253 
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spectro-temporal processor used within the French THEIA Land Data Centre. The 254 

procedure to create masks combined the detection of a sudden increase of reflectance in the 255 

blue wavelength on a pixel by pixel basis, several spectral tests to check that the clouds are 256 

white in the visible, and a test of the linear correlation of pixel neighborhoods taken from 257 

couples of images acquired successively (Hagolle et al. 2010). The procedure was tuned to 258 

identify even thin clouds. It had a low amount of false detections even when the gap 259 

between two clear images increases to one or two months. The shadow detection also used 260 

a multi-temporal approach and classified as "potential shadows" the pixels for which a 261 

darkening of the surface in the red band was observed.  The potential shadows were finally 262 

classified as shadows when a cloud was geometrically matched to the shadow. The 263 

atmospheric corrections in the solar domain were based on the inversion of an atmospheric 264 

radiative transfer model by exploiting the differential behavior of TOA reflectances in time 265 

and space depending on the variations in aerosol content of the atmosphere and the 266 

variations of surface properties. Hagolle et al. (2008), both with simulated and experimental 267 

data (Formosat-2 images), showed that the method worked well, in particular when the 268 

aerosol optical thickness varied significantly with time. This was particularly true over our 269 

area where aerosol optical thickness and surface reflectances were retrieved with a good 270 

accuracy. The adaptation of the method, originally designed for sensors with a revisit of 271 

only few days (as Formosat-2 or VENµS in the future), to ETM+ did not degrade the 272 

accuracy of the atmospheric correction significantly (Hagolle et al. (2012, 2015)). The 273 

inversion procedure and the atmospheric corrections were set accounting for the absorption 274 

by atmospheric molecules considering average values of ozone, oxygen and water vapor 275 

concentrations (Hagolle et al. 2008). A constant value of 3 cm was considered for the 276 

atmospheric precipitable water (W). Nevertheless, this estimate will improve with the use of 277 
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meteorological data within the processing chain, expected for the new operational version 278 

next year. 279 

TOC brightness temperatures (Tb) were produced from the TOA brightness 280 

temperatures after removing the atmospheric effect using the atmospheric radiative transfer 281 

model MODTRAN
®

 (Berk et al. 2003). Atmospheric profiles of pressure, temperature and 282 

humidity required for running MODTRAN
®
 were obtained from in situ radiosoundings 283 

launched at 12:00 UTC at Nîmes airport by Météo-France, located 30 km west of the study 284 

area. Radiosonde data were downloaded from (WWW3). TOC brightness temperatures 285 

were obtained by considering land surface emissivity equals to 1. Conversely to land 286 

surface temperature, TOC brightness temperature is not depending on any assumption on 287 

the definition of land surface emissivity. Thus, it can be used in a variety of applications 288 

including the assimilation in land surface models that generate thermal signals from 289 

coupled energy balance - radiative transfer parameterization (Olioso et al., 1999) or the 290 

evaluation of thermal infrared emission models such as the SCOPE model (Van der Tol et 291 

al., 2009; Duffour et al., 2015). In the present study, it was used to derive land surface 292 

temperature assuming specific estimations of land surface emissivity (see below). 293 

In the present study, 27 Landsat-7 ETM+ images acquired at about 10:15 UTC 294 

between 2007 and 2010 were used (i.e., around 7 images per year). The center of the 295 

images was targeted at nadir, while the viewing angle increases by about 7 or 8 degrees at 296 

the extreme of the workable part of the images. Solar zenith angle varied throughout the 297 

experimental period from 27º to 69º, depending on time of year. 298 
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2.3.2. Albedo estimation 299 

We estimated albedo (α) from spectral reflectances (ρj) using the NTB conversion 300 

method:  301 

å
=

+=
n

j

jj

1

0 .rbba       (2) 302 

where subscript j refers to the spectral band number and n to the number of bands, βj is the 303 

weighting coefficients, and b0 is the offset. We considered thirteen coefficient sets from the 304 

literature that can be applied to ETM+ spectral bands. They were labeled as m1–m13 and 305 

are summarized in Table 1. They were originally obtained by calibrating the linear 306 

combination model using either experimental data (m1 to m7), dataset simulated using 307 

radiative transfer models (m8, m9, m11 to m13), or theoretical consideration on the 308 

representativity of each spectral band (m10) – see associated references in Table 1. 309 

Coefficient sets m1 and m4 to m7 were obtained after calibration over datasets acquired in 310 

the same area as our study. Coefficient sets m2, m3, m8 and m10 were derived for TM or 311 

ETM+ sensors and included bands in the middle infrared. Other coefficient sets were 312 

derived for other sensors including Formosat-2, Airborne Polder, MISR, AVHRR, SEVIRI 313 

and MERIS. Formosat-2 had spectral bands very similar to ETM+, but not including 314 

middle infrared bands 5 and 7. Spectral bands for the other sensors may be significantly 315 

different from Landsat bands. Differences also occurred related to the geometry of spectral 316 

reflectance used when calibrating the linear model: hemispherical reflectances (m7 to m9, 317 

m11 to m13), bi-directional reflectances at nadir (m2 to m6, m10) and off nadir (~40°) bi-318 

directional reflectances (m1). Work by Jacob and Olioso (2002) showed that using nadir 319 

reflectances (m4 to m6) instead of hemispherical reflectances (m7) to derive the linear 320 
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model coefficients had an impact on the accuracy in albedo retrieval (~25 % increase in 321 

albedo calibration RMSE), while the model analysis performed by Bsaibes et al. (2009) 322 

showed that the zenith viewing angle was not affecting the derivation of the βj coefficients. 323 

[Insert Table 1 about here] 324 

2.3.3. Surface temperature estimation  325 

Land surface temperature (Ts) was computed from TOC brightness temperature (Tb) 326 

by accounting for land surface emissivity and reflection of atmospheric radiation according 327 

to the equation proposed by Olioso (1995a): 328 

 (3) 329 

where subscript λ1–λ2 refers to the spectral band of the thermal infrared sensor. The first 330 

term is an ‘emissivity term’ which increases with the reflectivity of the surface (1-ελ1–λ2) 331 

and with the temperature. The second term is an ‘atmospheric radiation term’ which also 332 

increases with the surface reflectivity, but decreases with the temperature, and is 333 

proportional to the atmospheric radiation. Factor fλ1-λ2(T) corresponds to the fraction of 334 

energy emitted in the considered spectral domain by a black body at temperature T relative 335 

to the emitted energy over the full spectrum. When considering ETM+ band 6, the 336 

following formulation is given by Idso (1981) (originally from Harrison (1960)): 337 

  (4) 338 

f10.4–12.5 µm(T) varies between 0.12 and 0.13 for temperatures between -10 ºC and +45 ºC. In 339 

the 10.4–12.5 µm range, the incoming atmospheric radiation (RLW
↓

10.4–12.5 µm) was expressed 340 

as a function of air temperature and a spectral atmospheric emissivity (εa 10.4–12.5 µm) as 341 

given by Idso (1981): 342 
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  (5) 343 

Based on measurements in clear sky conditions, Idso (1981) expressed εa 10.4–12.5 µm as a 344 

function of air temperature Ta (K) and air water vapor pressure ea (mbar) at surface level. 345 

Actually, emissivities used by Idso (1981) were derived from brightness sky temperature 346 

measurements made with an infrared thermometer facing the zenith (Tatm,0) and receiving 347 

radiation from approximately two degree viewing angle, assuming that: 348 

   (6) 349 

However, the effective brightness temperature of the whole sky hemisphere cannot be 350 

characterized by a single temperature at zenith (Rubio et al. 1997), and a corrective factor  351 

(γ10.4–12.5 µm) should be included in Eq. (6) such as: 352 

µ   (7) 353 

Hence, the spectral atmospheric emissivity in the 10.4–12.5 µm range derived by Idso 354 

(1981) should be reformulated as: 355 

  (8) 356 

García-Santos et al. (2013), exploring a large range of environmental conditions, provided 357 

the basis for expressing γ10.4–12.5 µm as a linear function of W. We assumed that γ10.4–12.5 µm 358 

can be approximated as the average of similar γ factors calculated by García-Santos et al. 359 

(2013) in the two spectral bands 10.2–11.3 µm and 11.5–12.4 µm : 360 

    (9) 361 

In our study, W was obtained from the local-radiosonding profiles made at Nîmes airport. 362 

W ranged from 0.29 to 3.21 cm, causing γ10.5–12.5 µm values ranging from 1.38 (for the 363 

wettest atmosphere) to 1.64 (for the driest). These coefficients imply to increase 364 
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significantly the original values of atmospheric emissivity from Idso (1981) study (which 365 

ranged from 0.1 (dryer cases) to 0.6 (wetter cases)). 366 

2.3.4. Emissivity estimation 367 

Land surface emissivities were required to convert TOC brightness temperature to 368 

land surface temperature and for the computation of net radiation: respectively spectral 369 

emissivity in the ETM+ band 6 (10.4 – 12.5 µm) and emissivity in the 8.0 – 13.5 µm range. 370 

Wittich (1997) proposed a simple analysis that made it possible to derive emissivity using a 371 

simple and generic formula from the NDVI: 372 

∞ ∞
∞

∞
  (10) 373 

The subscript s stands for bare soil conditions and the subscript ∞ for full vegetation 374 

canopy cover. NDVI is defined from near infrared (NIR) and red reflectances (band 4 and 3 375 

on ETM+, respectively) as: 376 

     (11) 377 

Eq. (10) can be applied to any study site as long as its coefficients (k, ε λ λ , ε∞ λ λ , 378 

NDVIs and ∞) can be derived from information on soil and plant canopy properties in 379 

the area of interest. Coefficient k mainly depends on the mean leaf inclination angle and the 380 

viewing angle. Simulation studies by Anton and Ross (1990), Olioso (1995b) and François 381 

et al. (1997) shown that k varies between 1 and 3.  382 

Field measurements of emissivity were not performed in our area during the studied 383 

period, so that we derived  and ∞  from data acquired over the same area 384 

during previous experiments, as well as data obtained over dense canopies of similar 385 

vegetation types in other sites. All these data are presented in Table 2. For bare soil we also 386 
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considered laboratory measurements of reflectance spectra in the 0.4–14.0 µm domain at 387 

various soil moisture levels. They were performed by Lesaignoux et al. (2013) over 388 

samples collected over our experimental area in 2007 and 2008 (see Table 3). Band 389 

emissivities  were calculated considering the convolution of the reflectance spectra to 390 

the considered bands: 391 

λ λ

λ
′

λ λ λ
λ

λ

λ
′

λ λ
λ

λ

     (12) 392 

where Bλ(T) is the Planck’s function at temperature T (approximated as 300 K), ρλ is the 393 

soil spectral reflectance (which is used to compute the spectral emissivity as ελ=1–ρλ, 394 

according to Kirchhoff’s law) and Sλ’ is the normalized spectral response function of band 395 

λ1–λ2. Similarly, NDVIs was derived from early mentioned spectral signatures of the 21 bare 396 

soils measured by Lesaignoux et al. (2013) and compared with values from our ETM+ 397 

images. ∞ was approximated to 0.90 in agreement with maximum values from the 398 

images. 399 

[Insert Table 2 about here] 400 

[Insert Table 3 about here] 401 

2.3.5. Net radiation estimation  402 

Net radiation maps were computed using Eq. (1) using maps of albedo, land surface 403 

temperature and emissivity derived from Landsat radiances. Incoming radiations were 404 

obtained from the INRA meteorological station network over the area combined to the four 405 

energy balance stations used in this study (see below). Incoming irradiances RSW
↓
 and RLW

↓
 406 

and air vapor pressure and temperature ea and Ta (required for calculating the incoming 407 

atmospheric radiation in the 10.4–12.5 µm range, RLW
↓
10.4–12.5 µm) were spatially interpolated 408 
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by inverse distance weighting. Spatial variations were not remarkable for air temperature 409 

and vapor pressure (maximum differences of 4 hPa for ea, 1.7 K for Ta). For incident 410 

radiations, spatial variations were usually low, but reached higher values for very few dates 411 

(maximum differences of 76 Wm
-2

 for RSW
↓
, 28 Wm

-2
 for RLW

↓
). 412 

2.4.  Ground based measurements for net radiation, albedo and surface temperature 413 

assessments 414 

Ground measurements were performed at four experimental sites (see Fig. 1) located 415 

in lower Rhone region (Avignon site) and la Crau-Camargue region (Coussouls, Domaine 416 

du Merle and Tour du Valat sites) in France: 417 

(1) The Avignon site consisted in a 2 ha field located in a semi-urban area. A 418 

succession of arable crops was cultivated from 2007 to 2010: sorghum, wheat, corn, 419 

sorghum and wheat. A full description of the site and data is given by Garrigues et al. 420 

(2014). 421 

(2) The Coussouls site corresponded to a large and flat stony area of more than 422 

7400 ha at the center of the Crau area. It was covered by a specific dry grass ecosystem 423 

(locally named ‘coussouls’). In spring, the ‘grass’ was grazed by sheep; in summer, the 424 

vegetation dried out quickly. 425 

(3) The Domaine du Merle site consisted in a 4.5 ha of irrigated meadows surrounded 426 

by other irrigated meadows in the North of the Crau area. It was irrigated by flooding every 427 

11 days from March to September. Three cuts were performed during the growing season 428 

(May, July and September) and it was grazed by sheep in winter.  429 

(4) The Tour du Valat site was located in Camargue over a Mediterranean saltmarsh 430 

scrubs area (locally known as ‘sansouires’), mostly composed of halophytic vegetation such 431 



 20 
 

as Salicornia sp. and Arthrocnemion sp. The vegetation distribution was heterogeneous at 432 

fine scale, creating surfaces presenting more or less large bare soil patches dotted with 433 

dense vegetation spots. A full description of the site is given by Gallego-Elvira et al. 434 

(2013). 435 

Net radiation, albedo and surface brightness temperature were measured in the four 436 

stations considered in this study. Measurements started in 2000 in Avignon (site 1), in 2007 437 

in Tour du Valat (site 4), in 2008 in Domaine du Merle (site 3), and in 2010 in Coussouls 438 

(site 2). CNR1 net radiometers (Kipp & Zonen, Delft, The Netherlands) were used, except 439 

for site 1 after September 2009 where a CNR4 net radiometer was installed. Description of 440 

the instruments can be found in Kohsiek et al. (2007) and at the manufacturer website 441 

(WWW4). CNR1 were composed of a CM3 pyranometer (0.3–2.8 μm) and a CG3 442 

pyrgeometer (5–42 μm) pair that faced upward and a complementary pair that faced 443 

downward. They measured the radiative balance terms including incoming (
¯
) and outgoing 444 

(
­
) irradiances in the solar domain (global radiation RSW) and the thermal infrared domain 445 

(atmospheric radiation RLW). The instruments were mounted between 1.5 m and 2 m above 446 

canopy top. Radius of the measurement footprint ranged from 25 to 35 m. The 447 

measurements were made every second and averaged every 30 minutes. In site 1 solar 448 

irradiance was also measured by higher quality instruments, an Eppley Precision Spectral 449 

Pyranometer PSP (0.3–2.8 μm) (EPLAB, Rhode Island, USA; (WWW5)) or a CMP21 450 

(0.3–2.8 μm; manufactured by Kipp & Zonen, Delft, The Netherlands).  451 

We calibrated CM3 and CG3 sensors on an annual basis along the measurement 452 

period following the process described in documents from International Organization for 453 

Standardization (ISO 1992) and World Meteorological Organization (WMO 2008). Sensors 454 
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were compared at site 1 to reference radiation sensors (CMP21 and CG4 sensors) linked to 455 

the radiation reference at the World Radiation Center in Davos (Switzerland) through 456 

Météo-France calibration facilities in Carpentras (France). Estimated uncertainties, 457 

combined and expanded (95 %), lower than 5 % and 8 % were obtained for the sensitivity 458 

of CM3 pyranometer and CG3 pyrgeometer, respectively. This uncertainty was calculated 459 

as the root square sum of uncertainties of random effects during outdoor comparison, 460 

datalogger voltages, sensitivity of reference sensor and instrument temperature 461 

measurements for CG3 and reference pyrgeometer.  462 

Net radiation (Rn) was calculated from the irradiances measured by the four 463 

components of the CNR1 net radiometer following: 464 

    (13) 465 

Albedo (α) was obtained as the ratio of the irradiance corresponding to the reflected 466 

solar radiation to the incoming irradiance (from CM3, CMP21 or PSP sensors): 467 

      (14) 468 

Surface temperature was computed from the outgoing thermal irradiance (RLW
↑
) based 469 

on the Stefan-Boltzmann law and the application of Eq. (3) for the 5–50 µm spectral range 470 

(Eq. 15 and 16). 471 

µ
µ

µ
µ

µ

µ µ

 (15) 472 

µ      (16) 473 

with Tb5–50 µm the brightness temperature (K). Note that in the spectral range considered 474 

here, the factor f5–50 µm in Eq. (3) corresponded to unity and that the surface emissivity was 475 

assumed to be obtained in the 8.0–13.5 µm spectral range (following Ogawa and Schmugge 476 
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(2004) and Cheng et al. (2013)). Emissivities ε8.0-13.5µm were estimated from ground 477 

information on canopy cover and database information on soil emissivity and canopy 478 

emissivity (Table 2 and Table 3). 479 

2.5. Performance metrics 480 

In order to measure the performance of remote sensing estimates (i.e., Rn, α and Ts), 481 

standards metrics were analyzed. The Mean Error (ME) is the bias between estimated 482 

values (Estimi) and ground-based measurements (Measi): 483 

    (17) 484 

where N is the number of samples. The estimated data (Estimi) correspond to the average 485 

over a 3×3 pixels window centered at the station. Standard deviations of the estimated 486 

values were providing information on the spatial heterogeneity around the field station. 487 

Absolute and Relative Root Mean Square Error (RMSEA and RMSER, respectively) 488 

quantified the scatter between measured and estimated values, leading to a quantitative 489 

assessment of the accuracy and precision of our estimates: 490 

   (18) 491 

    (19) 492 

2.6. Evaluation of uncertainties 493 

After characterizing the errors using the metrics above, we analyzed uncertainties. 494 

Uncertainty (hereafter specified by δ) gives a range of values likely to enclose the true 495 

value, while errors are directly derived from the difference between the estimates and the 496 

reference values. Therefore, the uncertainty concept is larger since it addresses error from 497 
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all possible effects together. It can be assessed by different techniques (ex. Crosetto et al. 498 

(2001)). In our study, a simple approach was considered to assess the uncertainties in net 499 

radiation by considering the impact of the uncertainties in the remote sensing information 500 

(spectral reflectances and TOC brightness temperature), the incoming radiations (shortwave 501 

and longwave irradiance) and the derivation of the surface variables from remote sensing 502 

data (albedo, emissivity and surface temperature). We estimated uncertainties for each pixel 503 

and each day by considering half the maximum variation of the estimate (A) provided: 504 

- by different models (M1 to Mn) for related input variables following:  505 

    (20) 506 

- or by the considered uncertainty of measurements (δx) following: 507 

      (21) 508 

Uncertainty in net radiation due to uncertainty in incoming shortwave (δRSW
↓
) and 509 

longwave (δRLW
↓
) radiation was calculated following Eq. (21) as: 510 

     (22) 511 

     (23) 512 

Uncertainties of 5 % and 8 % (see Section 2.4) were considered for RSW
↓
 and RLW

↓
 to 513 

account for their spatial heterogeneity and instrument calibration (e.g., δRSW
↓
=0.05·RSW

↓
 514 

and δRLW
↓
=0.08·RLW

↓
). These calculations of net radiation uncertainties considered the 515 

impact of uncertainties in incoming radiations alone. 516 

Uncertainty in net radiation due to uncertainty in spectral reflectances from satellite 517 

sensor (δρi) was estimated following: 518 

    (24) 519 
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where βi were the coefficients of the albedo model. Relative uncertainties of 5 % were 520 

assumed for each spectral band, equivalent to the calibration uncertainties according to 521 

Chander et al. (2009), while it could be considered greater due to atmospheric correction 522 

process and depending on the wavelength. 523 

Uncertainty in net radiation due to uncertainty in TOC brightness temperatures (δTb) 524 

was calculated following: 525 

    (25) 526 

We considered δTb equal to 1 K. This uncertainty level was in agreement with the analyses 527 

for monospectral sensors by Jacob et al. (2003), Li et al. (2004) and Mira et al. (2014) in 528 

relation to the spatial and temporal representativity of atmospheric information used for 529 

atmospheric corrections (i.e., spatial location and time of atmospheric profiles of 530 

temperature and humidity, and influence of the local atmospheric conditions in the lower 531 

layer of the atmosphere). 532 

Uncertainty in net radiation due to uncertainty in albedo δα was derived following 533 

Eq. (20) as follows: 534 

      (26) 535 

    (27) 536 

where mi stands for the different albedo models considered for the analysis: i = 1 to 13 537 

when considering all the albedo models; i = 2, 3, 8, 10 when considering only models 538 

established for Landsat images; i = 1, 2, 3, 8, 10 when considering Formosat-2 data 539 

together with Landsat data, as Formosat-2 wavebands are very similar to ETM+ bands 1 to 540 

4. In these calculations, only albedo uncertainty was accounted for. 541 
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The impact of uncertainties in land surface emissivity (ε8.0-13.5μm) was evaluated in a 542 

similar way as for albedo by considering different estimates (these different estimates are 543 

presented in the results section). 544 

Uncertainty in net radiation due to uncertainties in land surface temperature retrievals 545 

depends on uncertainties in land surface emissivity ε10.4-12.5μm and incoming atmospheric 546 

radiation RLW
↓

10.4-12.5μm. Uncertainties of brightness temperature due to calibration process 547 

are not accounted for in the analysis. The calculations were done by considering either both 548 

variables independently or combined. Estimations of incoming radiation were evaluated 549 

from the combined variation of ea and Ta over the various meteorological stations and 550 

different W estimates from the radiosoundings and the National Centers for Environmental 551 

Prediction (NCEP) profiles provided by (WWW6). 552 

Global uncertainties of surface net radiation, as well as uncertainties of shortwave and 553 

longwave radiative budgets, were calculated by considering the uncertainties for all the 554 

calculation inputs combined. Note here that when more than one variable is considered with 555 

uncertainty, all possible combinations are considered and can offset each other. 556 

3. Results 557 

3.1.  Albedo estimations 558 

Surface albedo varied from around 0.10 to 0.26 when considering all sites (see 559 

Fig. 2), which represent usual values reported in the literature for bare soil or vegetation 560 

covers (see Cescatti et al. (2012) for example). The lowest values were obtained over the 561 

saltmarsh scrubs ecosystem in Tour du Valat (site 4). They may be due to the presence of 562 

surface water in winter and to the specific type of vegetation which consisted for a large 563 
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extent in succulent herbs appearing almost leafless (Salicornia sp.). Highest values were 564 

obtained over the agricultural Avignon (site 1) for wheat stubbles (see Davin et al. (2014)). 565 

Observed standard deviation values of surface albedo estimates over a 3×3-pixel area 566 

indicated that some of the sites are characterized by a significant spatial variability of 567 

biophysical parameters around the station. This was observed at the Avignon (site 1). Such 568 

spatial variability may have an impact on the quality of the albedo retrievals since a 569 

Landsat pixel is around 1.5 to 4.5 larger than the footprint of the ground pyranometers.  570 

[Insert Fig. 2 about here] 571 

The evaluation of the albedo computed from each coefficient sets against ground data 572 

is presented in Table 4. RMSEA ranged from 0.025 to 0.033 (14 % to 19 % in terms of 573 

RMSER). In most cases, a significant negative bias, between -0.010 and -0.024 was 574 

obtained, in particular for estimations using middle infrared bands: m2, m3, m8 and m10. 575 

After subtracting the bias, performances of most of the coefficient sets improved. Similar 576 

performances were obtained for coefficient sets which did not include middle infrared 577 

bands (RMSEA between 0.024 to 0.028). Improvement of performances was larger for the 578 

coefficient sets including middle infrared bands (m2, m3, m8 and m10) leading to the 579 

lowest RMSEA (0.022 to 0.024). After unbiasing, the performances of each coefficient sets 580 

were in the range of albedo estimates over independent experimental data sets (e.g., Liang 581 

et al. (2002); Liang et al. (2005); Tasumi et al. (2008); Franch et al. (2014)). 582 

[Insert Table 4 about here] 583 

Possible sources of bias in albedo estimates were: the calibration of field sensors, the 584 

calibration and the correction of radiometric signals from ETM+ and the differences in 585 

spectral bands between ETM+ and the other sensors. Other possible sources of bias were 586 

related to the way the anisotropy of surface reflectance is accounted in albedo calculations 587 
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(Franch et al. 2014) and/or on atmospheric corrections. Our calculations of albedo from 588 

Landsat reflectances acquired at nadir were not explicitly accounting for surface reflectance 589 

anisotropy. However, the NTB procedures were originally calibrated over measured 590 

apparent albedo or simulated hemispherical albedo implying that the weighting coefficients 591 

in Eq. (2) account, at least partially, for anisotropy impact (Jacob and Olioso 2002). The 592 

atmospheric corrections scheme used in the elaboration of TOC spectral reflectance product 593 

by MUSCATE considered a constant amount of precipitable water, while it can 594 

significantly change over space and time and have a significant impact on near infrared and 595 

middle infrared wavebands (Vermote et al. (1997); Bryant et al. (2003)). A previous 596 

evaluation of the correction method (Hagolle et al. (2008) for the Formosat-2 sensor), 597 

presented small underestimations of spectral reflectances (see Fig. 11 from Hagolle et al. 598 

(2008)). 599 

3.2. Emissivity estimations 600 

No previous study proposed a calibrated emissivity model directly applicable over 601 

our study area. Thus, emissivity measurements at our sites, or over similar targets, were 602 

used to analyze the variability of the input parameters required by Eq. (10) to relate 603 

emissivity to NDVI (εs, ∞ , NDVIs, NDVIs, k). Parameter values are given in Fig. 3. 604 

 [Insert Fig. 3 about here] 605 

The range of spectral emissivities  computed from spectral reflectances of soil 606 

samples (Lesaignoux et al. 2013) showed a low variability from one sample to another and 607 

a dependence on soil moisture (Table 3, Fig. 3): from 0.963 to 0.986 in the 10.4–12.5 µm 608 

band and from 0.956 to 0.981 in the 8.0–13.5 µm band. These values agreed with 609 

emissivities of bare soils measured in the field in the same area by Labed and Stoll (1991), 610 
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Coll et al. (2001) and Coll et al. (2002) (Table 2, Fig. 3). Variations related to changes in 611 

soil moisture were also in agreement with Mira et al. (2007) and Mira et al. (2010). For full 612 

vegetation canopies, Table 2 provides emissivity ranging from 0.980 to 0.983 in the 613 

Landsat waveband and between 0.980 and 0.995 in the 8.0–13.5 µm band (however, very 614 

few data were available in the Landsat spectral range). Variations of soil sample NDVI 615 

between 0.08 and 0.32 (Table 3) were in agreement with NDVI values derived from soil 616 

pixels extracted from Landsat images. 617 

In order to account for the variability of emissivity and NDVI, we defined three sets 618 

of parameters resulting in three NDVI – emissivity curves in each spectral range (Fig. 3). 619 

Curve B provided an intermediate estimation of emissivities that was considered as a 620 

nominal emissivity model for our area. Curve A and Curve C provided lower and higher 621 

values of emissivity. These two other models were considered to define an uncertainty in 622 

emissivity estimation. The effect of uncertainty in spectral reflectances into the emissivity 623 

estimation (through relationship with NDVI) was not analyzed here given its small impact 624 

(<0.001). 625 

3.3. Estimation of surface temperature 626 

Land surface temperature estimated from TOC brightness temperature products were 627 

compared to ground based measurements over all measurement sites and dates (Fig. 4, 628 

Table 5). RMSEA was in the order of 1.7 K for emissivity Curve B (ε10.4-12.5 µm), mostly due 629 

to larger scatter at high temperatures for Tour du Valat and Avignon sites. RMSEA for 630 

Curve A and Curve C were in the same order. The different emissivity curves generated 631 

changes in bias from -0.1 K for the highest emissivity (Curve C) to +0.6 K for the lowest 632 

emissivity (Curve A). The best performances were obtained over homogeneous grassland 633 
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(Domaine du Merle and Coussouls sites). Performances were reduced over more 634 

heterogeneous sites: at Tour du Valat the surface was composed by patches of bare soil and 635 

vegetation, and the Avignon site represented a small crop field (2 ha) with in-field 636 

variability and surrounded by various other surfaces. If data from Avignon (site 1) were not 637 

considered, the RMSEA improved by 0.2 K (Fig. 4). Another source of errors may be related 638 

to the land surface emissivity of the sansouire ecosystem in Tour du Valat (site 4). Actually 639 

no information existed on emissivity of such type of ecosystem with a high salt level and a 640 

large amount of leafless plants. As NDVI values were low due to the specific vegetation 641 

(see also the low albedo values), the emissivity could have been significantly 642 

underestimated using Eq. (10) leading to a significant overestimation of surface 643 

temperature, in particular at high temperature (Olioso 1995a; Olioso et al. 2013). However, 644 

the results were reasonable and consistent with the accuracy found in other studies (Li et al. 645 

(2004); Jiménez-Muñoz et al. (2009); Coll et al. (2010)). 646 

[Insert Fig. 4 about here] 647 

[Insert Table 5 about here] 648 

3.4. Estimation of net radiation  649 

Net radiation estimated from Landsat-7 data shows typical variations in time and 650 

space as a function of incident radiation and surface conditions (Fig. 5 and Fig. 6). Overall, 651 

surface net radiation varies from around 130 Wm
-2

 for a high albedo area in winter (200 652 

Wm
-2

 in average over the whole image) to 790 Wm
-2

 for a dark and wet area in summer 653 

(600 Wm
-2

 in average). For a given day, spatial variations in Rn were in a range close to 654 

50 % of its areal average depending on albedo and surface temperature level in relation to 655 

surface characteristics and land use (range from ~100 Wm
-2

 in winter to ~300 Wm
-2

 in 656 
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summer). Evaluation of net radiation estimates showed a good agreement for all type of 657 

surfaces in general with a limited bias (Table 6 and Fig. 7). RMSEA were around 20 Wm
-2 

658 

whatever the albedo model used. When using unbiased albedo models, RMSEA changed 659 

only slightly. Relative RMSE were in the order of 5 %, which showed that the sensitivity of 660 

net radiation to errors in albedo estimation was low (error in albedo were up to almost 661 

20 %). In a similar way, standard deviations of net radiation estimates given in Fig. 7 were 662 

low indicating a low spatial variability in comparison to albedo (except for a pair of data 663 

from Avignon (site 1)). 664 

[Insert Fig. 5 about here] 665 

[Insert Fig. 6 about here] 666 

 [Insert Table 6 about here] 667 

[Insert Fig. 7 about here] 668 

3.5.  Uncertainty analysis  669 

Uncertainties in net radiation estimation presented strong seasonal patterns in 670 

correlation with the seasonal cycle of incident radiations, in particular solar irradiance, and 671 

net radiation (Fig. 8 and Table 7). They also presented strong spatial variability in relation 672 

to the variation of surface variables related to land use (Fig. 9). The North East – South 673 

West gradient observed in Fig. 9 resulted from the spatial variation of incoming radiation. 674 

[Insert Fig. 8 about here] 675 

[Insert Table 7 about here] 676 

[Insert Fig. 9 about here] 677 

Net radiation uncertainties were first analyzed in Table 7 as a function of 678 

uncertainties in input quantities for a typical winter day and a typical summer day (which 679 
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usually presented the lowest and highest uncertainty levels, respectively). The uncertainty 680 

in net radiation was strongly dependent on the uncertainties in incoming radiation 681 

measurements and less dependent on the uncertainties in albedo and land surface 682 

temperature retrievals. 683 

Net radiation uncertainties coming from uncertainties in land surface emissivities 684 

(δε8.0-13.5 μm<0.010 or δε10.4-12.5 μm<0.011) or from incoming atmospheric radiation in the 685 

measurement spectral band (δRLW
↓

10.4-12.5μm<7.3 Wm
-2

) were negligible, and besides, their 686 

contributions compensated each other when considered their combination (δRn(ε8.0-13.5 μm, 687 

ε10.4-12.5 μm, RLW
↓
10.4-12.5μm)~0 Wm

-2
). In the following, we detailed only the results for the 688 

most influencing factors (incident radiations, estimated albedo and remote sensing products 689 

of reflectances and brightness temperature). 690 

3.5.1. Global uncertainties in net radiation 691 

Global uncertainty in net radiation (δRn) estimation ranged between 40 Wm
-2

 in 692 

winter and 100 Wm
-2

 in summer (Fig. 8a), representing around 15 and 20 % of the net 693 

radiation, respectively. NB: these uncertainties were calculated by accounting only for 694 

albedo models designed for Landsat (see below). Overall, δRn was equally distributed 695 

between the shortwave and longwave radiative budgets (Fig. 8b–c). In summer, the 696 

uncertainty in the solar absorption was slightly dominant. In winter, the uncertainty in net 697 

longwave radiation was slightly dominant. Spatial variations were larger in summer and 698 

almost fully related to uncertainties in solar absorption estimation (Fig. 9a-c). 699 
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3.5.2. Uncertainties in incoming radiation 700 

The input variables influencing the most the uncertainty in net radiation were the 701 

uncertainties in in situ measurements of incoming shortwave and longwave radiations (Fig. 702 

8d–e). RSW
↓ 

uncertainties of 5 % were associated with Rn uncertainties varying from 10 to 703 

40 Wm
-2

. RLW
↓ 

uncertainties of 8 % were associated with Rn uncertainties varying from 20 704 

to 30 Wm
-2

. Together these represented around 70 % of the global uncertainties in net 705 

radiation and varied with the season. 706 

3.5.3. Uncertainties in albedo and spectral reflectances 707 

Uncertainty in estimated albedo was stable along the experimental period of time. 708 

When considering all the albedo models together uncertainty was up to 0.023 (0.017 as a 709 

median), which resulted in uncertainties in net radiation from 5 to 50 Wm
-2

 (Fig. 8f). 710 

However, the largest uncertainty levels were obtained over few specific areas 711 

corresponding mostly to quarries and industrial areas for which albedo models were not 712 

appropriate (industrial buildings, oil refinery, oil storage tanks areas, large asphalt zones, 713 

salt storage areas…) (Fig. 9d). Unbiased albedo models reduced uncertainties by almost 714 

50 %. Further, when only unbiased albedo models originally defined for Landsat sensors 715 

were considered, uncertainties were considerably reduced: δα between 0.002 and 0.005 716 

(0.003 as a median) and δRn(α) below 10 Wm
-2

 (around 2 Wm
-2

 as a median) (Fig. 8g). 717 

Fig. 9e showed that the largest uncertainties were still obtained over industrial areas, but 718 

also over irrigated fields (paddy rice and irrigated grassland) and some wetlands. This 719 

might be related to the sensitivity of MIR reflectances to background reflectance from soil 720 

or water under vegetation.  721 
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Uncertainties in spectral reflectances δρi (5 % for all bands) resulted in δRn(ρi) almost 722 

twice larger than δRn(α) when considering only unbiased albedo models designed for 723 

Landsat (in a similar order as when considering all the unbiased albedo model together). 724 

Spatial variations were related to the level of reflectance and the lowest uncertainties were 725 

obtained over wetlands and forested areas (Fig. 9f). Given values from Table 7, the reader 726 

could calculate the δRn(ρi) derived from other δρi values, as it varies proportionally. 727 

Overall, the combination of albedo model and reflectance uncertainties ended up in 728 

an uncertainty between few Wm
-2

 and 25 Wm
-2

 (median values between 4 and 13 Wm
-2

) in 729 

calculation of Rn.  730 

3.5.4. Uncertainties in the emission term 731 

The uncertainties in the emission term depended on the uncertainties in TOC 732 

brightness temperature δTb10.4-12.5μm, in emissivities δε10.4-12.5μm and δε8.0-13.5μm, and in 733 

incident radiation δRLW
↓

10.4-12.5μm. δTb10.4-12.5μm (set to 1.0 K) was the main driver, generating 734 

δRn(Tb10.4-12.5μm) between 5 and 7 Wm
-2

 all year long with almost no variations. The second 735 

driver was δε10.4-12.5μm. The other factors were negligible. Given values from Table 7, the 736 

reader could calculate the δRn(Tb10.4-12.5μm) derived from other δTb10.4-12.5μm, as it varies 737 

proportionally. 738 

Overall, uncertainty in the emission term was almost constant around 8 Wm
-2

 which 739 

represented 30 % of the global uncertainty in the net thermal radiation uncertainty. Fig. 9g 740 

shows that this uncertainty was also spatially homogeneous. 741 
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4. Discussion  742 

In this study we evaluated surface net radiation, albedo and surface temperature 743 

estimates derived from Landsat-7 over various surface types. These evaluations were 744 

performed both in terms of errors by comparison to in situ measurements and in terms of 745 

uncertainties in relation to uncertainties in the variables required for the computation of Rn. 746 

Concerning evaluation of remote estimates against in situ data, windows of 3×3 pixels were 747 

arbitrarily considered to take into account possible geolocation errors and include the 748 

measurement footprint of the sensors, characterized by their Point Spread Function (which 749 

implies in particular that the contribution to the signal for each pixel originates from a 750 

larger surface than the pixel size, Mira et al. (2015)).  We expect that the variability of the 751 

3×3 window is an indication of the variability of the area and that it can be an indication of 752 

the confidence in the comparison. However, there was no fully adequate way for matching 753 

information since the two types of measurements (satellite and in situ) had different 754 

footprint shapes and no higher resolution information was available for analyzing the 755 

spatial variability within each footprint. 756 

In our estimations, net radiation varied from a minimum value of 130 Wm
-2

 to a 757 

maximum of 790 Wm
-2

 depending on the seasons, surface types and land use. A good 758 

agreement with in situ measurements of net radiation was found for all surface types 759 

(RMSEA~20 Wm
-2

). However, the computation of net radiation from both Landsat images 760 

and in situ measurements used the same measurements of incident radiations (RSW
↓
 and 761 

RLW
↓
). Thus, considering the uncertainties in incident radiations, the evaluation of estimated 762 

Rn was clearly optimistic. This explained that net radiation evaluations in Fig. 7 always laid 763 
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well inside of the level of net radiation uncertainties (45 Wm
-2

 to 85 Wm
-2

 from winter to 764 

summer). This was not the case for albedo (Fig. 2) and surface temperature (Fig. 4). 765 

Estimations of albedo from Landsat data were obtained by applying the NTB 766 

conversion method using different coefficient sets. Albedo were within a large range of 767 

values (~0 to ~0.6) indicating a large spatial variability depending on land use. When 768 

evaluated against ground data, the albedo obtained with any of the coefficient sets used in 769 

the NTB conversion, except one, were showing a significant negative bias. This bias was 770 

higher than uncertainties related to the calibration of the remote sensor (evaluated to 5 % in 771 

spectral reflectances (Chander et al. 2009)). Underestimation of albedo estimated from 772 

Landsat data were also recently reported by Shuai et al. (2011), Roman et al. (2013), and 773 

Franch et al. (2014). The latter demonstrated that it was possible to reduce the bias by  774 

improving both 1) the way anisotropy of surface reflectance is accounted in the albedo 775 

calculation and 2) the atmospheric corrections by introducing local measurements of 776 

atmospheric parameters (from the AERONET network). This raises the question of the 777 

evaluation of the accuracy of operational spectral reflectance products (or pre-operational 778 

products as those used in our study). These products are usually based on more systematic 779 

estimation of atmospheric parameters which are less accurate. This also militates in favor of 780 

the development of detailed albedo products based on the merging of Landsat nadir 781 

reflectance and BRDF information from other sensors such as MODIS or PROBA-V. After 782 

unbiasing, albedo estimates were within the range of performances observed over 783 

independent experimental data sets (RMSEA ~0.022–0.024), and as expected the best results 784 

were obtained for albedo coefficient sets that were derived for Landsat sensors. This 785 

indicated the necessity of accounting for the spectral characteristics of the sensors in the 786 

derivation of albedo models. It is interesting to notice that while the different coefficient 787 
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sets were derived for Landsat sensors using different methods, the estimated albedo 788 

remained in a narrow range as shown by the low uncertainty related to the choice of 789 

coefficient sets (Fig. 8g): calibration against surface reflectance models (Liang 2000), 790 

against ground measurements (Dubayah (1992); Duguay and Ledrew (1992); Bsaibes et al. 791 

(2009)) or on the basis of theoretical spectral distribution (Tasumi et al. 2008). 792 

Nevertheless, if we have to retain one single set of coefficients for computing albedo from 793 

Landsat data, model m3 proposed by Duguay and Ledrew (1992) would be a good option 794 

(considering our results it would have to be unbiased). This coefficient set is the only one 795 

among the sets we have tested that does not include the blue band b1 which is usually 796 

highly sensitive to atmospheric corrections and can generate noisy reflectance data.  797 

Results from the evaluation of surface temperature against ground measurements 798 

showed RMSEA of 1.7 K. This was in the range of the uncertainties we evaluated for the 799 

derivation of surface temperature as a function of brightness temperature and surface 800 

emissivity (~1.5 K in Table 7). The uncertainty in surface temperature may increase if 801 

either the available information for deriving brightness temperature product is limited (e.g., 802 

atmospheric profiles in temperature and moisture) or land surface emissivity is not well 803 

known. This may be enhanced in specific situations where the derivation of brightness 804 

temperature and surface temperature are more sensitive to input information, as for a high 805 

level of moisture in the atmosphere or for a large variability of land surface emissivity (in 806 

particular for area with the presence of sandy soils). Frequent errors in satellite-based land 807 

surface temperature of vegetated surfaces due to incomplete emissivity and atmospheric 808 

corrections were reported up to 2 to 5 K for various sensors (Li et al. (2004); Sobrino et al. 809 

(2004); Wang and Liang (2009a); Guillevic et al. (2012); Hulley et al. (2012); Guillevic et 810 

al. (2014)). 811 
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Uncertainties in the derivation of albedo and surface temperature had limited impacts 812 

on the uncertainty in net radiation estimation. Albedo, together with spectral reflectances 813 

represented only 10 % (winter) to 15 % (summer) of the global uncertainty in net radiation 814 

and the emission term 20 % (winter) to 10 % (summer). The largest uncertainties were 815 

related to the estimation of incident radiations: more than two thirds of the uncertainty in 816 

net radiation estimation. When estimating net radiation from remote sensing data, spatial 817 

measurements or estimation of incident radiation are required to 1) describe the spatial 818 

variability (which is often not large in cloudless conditions at the scale of a Landsat image) 819 

and 2) to evaluate incident radiations in areas without adequate ground meteorological 820 

network. Several methods were proposed to estimate incident radiation from remote 821 

sensing (see a review by Liang et al., 2010). They usually provide irradiance data with 822 

uncertainties around twice larger than ground measurements. In general, estimation of solar 823 

irradiance is less accurate than estimation of downwelling longwave radiation: around 50 824 

Wm
-2

 to 100 Wm
-2

 for RSW
↓
 and 15 Wm

-2
 to 40 Wm

-2
 for RLW

↓
 (Wang and Liang (2009b); 825 

Liang et al. (2010); Bisht and Bras (2011); Lefèvre et al. (2013); Garrigues et al. (2015)). In 826 

our analysis, the use of remote sensing products of incident radiations, in particular solar 827 

irradiance, would significantly increase the uncertainty level of the retrieved net radiation, 828 

possibly up to 130 Wm
-2

. However, reported evaluation of net radiation estimations are 829 

usually well inside this uncertainty level. Possible improvements for the estimation of solar 830 

irradiance, by up to 40 %, were recently shown by including better descriptions of aerosol 831 

and water vapor contents (Lefèvre et al. (2013); Ceamanos et al. (2014)). However, these 832 

methodologies are not yet used to derive operational products.  833 

Overall, we could generalize the results from this study to other study areas and 834 

sensors. Nevertheless, special attention should be paid to the characterization of emissivity 835 
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as it requires a good knowledge of the spectral characteristics of all soils and canopy covers 836 

of the ecosystem unusually available. In our experiment, emissivities had a low impact, but 837 

uncertainties in emissivity estimation were low. In other areas, when emissivity of dry bare 838 

soil can be significantly lower (e.g., Van de Griend and Owe (1993)) or when soils with 839 

very different emissivities coexist over the same area, it would be possible that impact on 840 

uncertainties in net radiation increases. However, this impact would be still lower than the 841 

impact of incident radiation uncertainties.  842 

Our study was only considering net radiation and further efforts have to be done for 843 

analyzing uncertainties in heat flux estimation and in particular evapotranspiration. The 844 

impact of the uncertainties in the estimation of surface temperature will have to be assessed 845 

in more details as surface temperature is crucial information for partitioning heat fluxes into 846 

its latent and sensible components. Simple calculations show that uncertainties of 1 K and 847 

3 K in surface temperature may generate uncertainties around 15 % and 40 % in 848 

evapotranspiration estimation. We should also notice that large uncertainty levels observed 849 

from uncertainties in spectral reflectances and albedo were located over few specific 850 

regions typically corresponding to quarries and industrial areas. From a point of view of 851 

directly estimating surface energy fluxes, we could consider that such areas were not of 852 

special interest for our study, downplaying them. However, a more thorough study is 853 

required to analyze whether those pixels are relevant or not to correctly estimate 854 

evapotranspiration following approaches like SEBAL (Bastiaanssen et al. 1998), the 855 

triangle method (Jiang and Islam 1999) or the Simplified Surface Energy Balance Index 856 

model (S-SEBI, Roerink et al. (2000)). These approaches consider the spatial variability of 857 

reflectance or albedo for defining wet and dry areas which are used to bound 858 

evapotranspiration evaluation to minimum and maximum levels. 859 
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5. Conclusion 860 

The level of uncertainties reported in this study for net radiation is usually larger than 861 

errors reported in other studies. For example, Kustas and Norman (1996) reviewed various 862 

methods of estimating the net shortwave and longwave radiation fluxes and found that a 863 

variety of remote sensing methods of surface net radiation estimation had an uncertainty of 864 

5–10 % compared with ground-based observations on meteorologically temporal scales. In 865 

our case, uncertainties were in the 15–20 % range. Actually, previous assessment of net 866 

radiation estimates from remote sensing data were usually based on the comparison to 867 

ground data only, without considering a formal analysis of uncertainties and their sources.  868 

In our study, a simple definition of uncertainty was used in order to provide an 869 

evaluation of the possible errors in the estimation of net radiation (and intermediate 870 

variables). Error analysis based on RMSE calculations also considers an averaged impact 871 

over datasets which have usually a limited number of individual data. The analysis we 872 

performed in our study provides more generic information as uncertainties are mostly 873 

independent of the data used for computing RMSE.  874 

We believe that the uncertainty evaluations presented in this study can be easily 875 

transferred to the analysis of mapping net radiation from other space or airborne sensors. In 876 

any cases, the uncertainties related to the estimation of incident radiations will be the main 877 

source of uncertainties in the estimation of net radiation. This has to be considered deeper 878 

in future analysis of energy flux mapping. Up to now, a large amount of efforts in the flux 879 

mapping community have been focused both on the estimation of intermediate land surface 880 

variables (albedo, emissivity, surface temperature) and on the derivation of flux calculation 881 

algorithms. Our study shows that improvements in algorithms to estimate albedo, surface 882 
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emissivity and surface temperature from remote sensing would reduce net radiation 883 

uncertainties only marginally. We believe that in most situations, standard land products 884 

such as those generated by the THEIA Land Data Centre, are accurate enough to provide 885 

net radiation estimation from Landsat data. At present, TOC spectral reflectances are 886 

provided. In the next future, new products will be available including surface temperature 887 

and albedo. 888 

 We are currently developing the EVASPA tool (Evapotranspiration Assessment from 889 

SPAce, Gallego-Elvira et al. (2013)) for analyzing the impact of the uncertainties in net 890 

radiation and intermediate variables estimation on the estimation of evapotranspiration 891 

from remote sensing data. This tool makes also possible to analyze uncertainties in net 892 

radiation and evapotranspiration considering different time scale: instantaneous (as in the 893 

present study), daily, monthly and yearly. 894 
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FIGURES 1264 

 1265 

Fig. 1. Albedo map derived from the central workable part of the Landsat-7 ETM+ image 1266 

acquired on July 8
th

, 2008 over the lower Rhône Valley, South-Eastern France. Typical 1267 

view, main land cover and location of the instrumented sites used for this study.  1268 
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 1269 

Fig. 2. Comparison of albedo estimates using Landsat-7 data (unbiased m3 model) and in 1270 

situ measurements over the sites. Error bars show the standard deviation of averaged data 1271 

(i.e., 3×3 pixels 30-m resolution) and solid lines denote an estimation for uncertainty in 1272 

albedo. ME: bias; RMSEA and RMSER: absolute and relative Root Mean Square Error. 1273 
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 1274 

Fig. 3. Relationship between NDVI and emissivities for the 10.4–12.5 µm and the 8.0–13.5 1275 

µm spectral ranges following Wittich (1997)’s model (Eq. 10) and coefficient values given 1276 

in Table 5. Curve B corresponds to the nominal values of emissivity considered in this 1277 

study; Curve A and Curve C denote an estimation for uncertainty in emissivity; dots 1278 

correspond to experimental data from Lesaignoux et al. (2013) over soils with different soil 1279 

moisture content; white rectangle indicates the range of values corresponding to ground 1280 

measurements over soil samples from Alpilles (Coll et al., 2001, 2002) and La Crau (Labed 1281 

and Stoll, 1991); filled rectangle indicates the range of values corresponding to 1282 

experimental measurements over surfaces with high NDVI (Coll et al., 2003, 2010; Olioso 1283 

et al., 2007).  1284 
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 1285 

Fig. 4. Comparison of surface temperature estimates using Landsat-7 data and in situ 1286 

measurements over the sites. Error bars (only significant for Avignon site) show the 1287 

standard deviation of averaged data (i.e., 3×3 pixels 60-m resolution) and solid lines denote 1288 

an estimation for uncertainty in surface temperature. ME: bias; RMSEA: absolute Root 1289 

Mean Square Error.  1290 
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  1291 

Fig. 5. Spatial distribution of net radiation estimates for the entire Landsat-7 image 1292 

acquired at 10:30 UTC on July 8
th

, 2008 over the Crau-Camargue. It was used albedo 1293 

model m3 with no bias. Pixels with value higher than 800 or lower than 350 (a small 1294 

percentage of the entire image) are masked in red and blue, respectively. Water, clouds, 1295 

shadows, and pixels with an altitude higher than 100 m are masked in white.  1296 
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 1297 

Fig. 6. Temporal variation of net radiation estimates using Landsat-7 data. It was used 1298 

albedo model m3 with no bias. Each boxplot belongs to an acquisition day and comprises 1299 

the median (central thick line), the first and third quartile (inferior and superior edges of the 1300 

boxes), and the extreme values excluding outliers (inferior and superior whiskers). 1301 
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 1302 

Fig. 7. Comparison of net radiation estimates using Landsat-7 data and in situ 1303 

measurements over the sites. It was used albedo model m3 with no bias. Error bars (only 1304 

significant for Avignon site) show the standard deviation of averaged data (i.e., 3×3 pixels 1305 

60-m resolution) and solid (respectively dash-dot) lines denote an estimation for minimum 1306 

(respectively maximum) uncertainty in net radiation. ME: bias; RMSEA and RMSER: 1307 

absolute and relative Root Mean Square Error.  1308 
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 1309 

Fig. 8. Temporal variation of uncertainties in net radiation estimates using Landsat-7 data 1310 

due to uncertainty in the most influencing factors. Global uncertainties in net radiation (a), 1311 

and corresponding uncertainty from the first term (b) and second term (c) of Eq. (1), 1312 

followed by uncertainties in net radiation due to: 5% uncertainty in incoming solar 1313 

irradiance (d), 8% uncertainty in atmospheric irradiance (e), and uncertainties in albedo 1314 

from consideration of models m1-m13 (f) or unbiased models m2, m3, m8 and m10 (g). 1315 

Uncertainties from a and b were computed considering unbiased albedo models m2, m3, 1316 

m8 and m10. Each boxplot belongs to an acquisition day and comprises the median (i.e., 1317 

central thick line), the first and third quartile (i.e., inferior and superior edges of the boxes), 1318 

and the extreme values excluding outliers (i.e., inferior and superior whiskers).  1319 
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 1320 

Continuation of Fig. 8 1321 

  1322 
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 1323 

Fig. 9 (see below)  1324 
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Fig. 9. Spatial distribution of uncertainties in net radiation estimates using Landsat-7 data 1325 

(acquired at 10:30 UTC on July 8
th

, 2008 over the Crau-Camargue) due to uncertainty in 1326 

the most influencing factors. Global uncertainties in net radiation (a), and corresponding 1327 

uncertainty from the first term (b) and second term (c) of Eq. (1), followed by uncertainties 1328 

in net radiation due to: uncertainties in albedo from consideration of models m1-m13 (d) or 1329 

unbiased models m2, m3, m8 and m10 (e), 5% uncertainty in spectral reflectances (f), and 1 1330 

K uncertainty in brightness temperature (g). Uncertainties from a and b were computed 1331 

considering unbiased albedo models m2, m3, m8 and m10. Pixels with value higher than the 1332 

maximum (or lower than the minimum) value in the corresponding scale (i.e., a small 1333 

percentage of the entire image) are masked in red (or blue). Water, clouds, shadows, and 1334 

pixels with an altitude higher than 100 m are masked in white.  1335 
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TABLES 1336 

 1337 

Table 1. Coefficients sets used to compute albedo as a linear combination of waveband 1338 

Landsat-7 reflectances using Eq. (2), where βo is the offset and Sensor indicates the sensor 1339 

for which each model was originally defined. Symbol “–” means that the band was not 1340 

considered in the analysis; bi is the spectral band i from Landsat-7; mj: albedo model j; 1341 

NIR: near infrared; MIR: middle infrared; TM: Thematic Mapper on board of Landsat-5; 1342 

ETM+: Enhanced Thematic Mapper Plus on board of Landsat-7; MISR: Multi-angle 1343 

Imaging Spectro Radiometer; AVHRR: Advanced Very High Resolution Radiometer; 1344 

MSG: Meteosat Second Generation; MERIS: Medium Resolution Imaging Spectrometer. 1345 

Albedo model Sensor 
Blue 

(b1) 

Green 

(b2) 

Red 

(b3) 

NIR 

(b4) 

MIR1 

(b5) 

MIR2 

(b7) 
β0 

(m1)   Bsaibes et al. (2009) Formosat-2 – – 0.619 0.402 – – – 

(m2)   Dubayah (1992) TM 0.221 0.162 0.102 0.354 0.059 0.019 – 

(m3)   Duguay & Ledrew (1992) TM – 0.526 – 0.314 – 0.112 – 

(m4)   Jacob & Olioso (2002) – I  – – 0.227 0.305 – – 0.059 

(m5)   Jacob & Olioso (2002) – II Airborne – -0.136 0.334 0.316 – – 0.059 

(m6)   Jacob & Olioso (2002) – III Polder -0.099 -0.087 0.351 0.314 – – 0.058 

(m7)   Jacob & Olioso (2002) – IV  – – 0.591 0.374 – – -0.001 

(m8)   Liang (2000) TM/ETM+ 0.356 – 0.130 0.373 0.085 0.072 -0.0018 

(m9)   Liang (2000) MISR – 0.126 0.343 0.415 – – 0.004 

(m10) Tasumi et al. (2008) TM/ETM+ 0.254 0.149 0.147 0.311 0.103 0.036 – 

(m11) Weiss et al. (1999) – I  AVHRR – – 0.570 0.460 – – – 

(m12) Weiss et al. (1999) – 

II 
MSG-SEVIRI – 0.680 0.080 0.350 – – – 

(m13) Weiss et al. (1999) – III   0.06 0.69 0.001 0.35 – – – 

  1346 
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Table 2. Spectral emissivities for bare soils and dense plant canopies measured in situ in La 1347 

Crau area and over the Alpilles-ReSeDA experimental site (a small agricultural area mid-1348 

way of the Crau-Camargue region and Avignon). In situ measurements acquired over well-1349 

developed crops from other Mediterranean areas are also presented (similar crops as in our 1350 

test site). All these in situ measurements were obtained using the Box method (Rubio et al., 1351 

1997) and thermal radiometers. 1352 

Reference 

[experimental site] 

Sample type 

‘Original label’ 
Short band emissivities 

BARE SOIL ε10.2–11.3 µm ε11.5–12.4 µm ε8.0–13.5 µm 

Coll et al. (2002) 

[Alpilles]   

‘101’ 0.962 ± 0.003 0.963 ± 0.004 0.961 ± 0.004 

‘102’ 0.967 ± 0.003 0.968 ± 0.003 0.968 ± 0.002 

‘120’ 0.963 ± 0.004 0.964 ± 0.004 0.965 ± 0.002 

‘121’ 0.967 ± 0.003 0.971 ± 0.005 0.967 ± 0.003 

‘304’ 0.962 ± 0.006 0.964 ± 0.005 0.963 ± 0.003 

Coll et al. (2001) 

[Alpilles] 

‘214’   0.955 ± 0.018 

‘500’   0.958 ± 0.013 

‘Le Mas Neuf’ – wet soil 0.979 ± 0.006 

Labed and Stoll (1991) 

[La Crau] 

Center of La Crau – soil without stones 0.9690 ± 0.0013 

Center of La Crau – dry stony area 0.959 ± 0.008 

DENSE VEGETATION   ε8.0–13.5 µm 

Coll et al. (2001) 

[Alpilles] 

‘101’ Wheat (plant + soil) 0.987 ± 0.008 

‘120’ Wheat (plant + soil) 0.987 ± 0.005 

‘101’ Wheat (soil + stubble) 0.961 ± 0.011 

‘120’ Wheat (soil + stubble) 0.957 ± 0.015 

‘203’ Alfalfa full cover (plant + soil) 0.987 ± 0.004 

Labed and Stoll (1991) 

[La Crau] 

La Crau, north – very short grass 0.979 

La Crau, north – tufts of grass 0.981 

La Crau, north – grassland 0.983 

La Crau, north – bushes 0.994 

DENSE VEGETATION IN OTHER AREAS ε10.2–11.3 µm ε11.5–12.4 µm ε8.0–13.5 µm 

Coll et al. (2003)  

[Barrax] 
‘A4’ Alfalfa 0.978 ± 0.009 0.981 ± 0.007 0.980 ± 0.006 

Olioso et al. (2007)  

[Marrakech] 
Wheat 0.976 ± 0.009 0.984 ± 0.006 0.981 ± 0.006 

Coll et al. (2010)  

[Albufera de Valencia] 
Rice ε10.4–12.5 µm = 0.983 ± 0.005 

(0.980 to 0.985)  

± 0.005 
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Table 3. Emissivities in 10.4-12.5 µm and 8.0-13.5 µm bands and NDVI of dry and wet 1354 

bare soils calculated from the reflectance spectra measured by Lesaignoux et al. (2013). 1355 

Wet samples had soil moisture up to 45%. 1356 

‘Original label’ 

Emissivity (ελ1-λ2) NDVI 
10.4–12.5 µm 8.0–13.5 µm 

dry wet dry wet dry wet 

AVIGNON SITE (site 1) 

‘84Avignon’ 0.967 0.975 0.957 0.970 0.103 0.118 

CRAU AREA 

‘13Crau1’ 0.973 0.986 0.963 0.981 0.191 0.186 

‘13Crau2’ 0.972 0.985 0.961 0.979 0.175 0.189 

CAMARGUE AREA 

‘30BleA’ 0.967 0.980 0.961 0.975 0.126 0.122 

‘30BleB’ 0.965 0.983 0.964 0.979 0.101 0.114 

‘30BleC’ 0.971 0.982 0.962 0.978 0.101 0.131 

‘30LuzerneA’ 0.968 0.981 0.958 0.976 0.114 0.171 

‘30LuzerneB’ 0.967 0.980 0.959 0.974 0.130 0.156 

‘30LuzerneC’ 0.967 0.978 0.964 0.972 0.148 0.168 

‘30PrairieA’ 0.967 0.980 0.966 0.975 0.217 0.235 

‘30PrairieB’ 0.969 0.981 0.968 0.977 0.257 0.318 

‘30PrairieC’ 0.971 0.985 0.960 0.981 0.227 0.261 

‘30SolNuA’ 0.966 0.981 0.961 0.976 0.088 0.094 

‘30SolNuB’ 0.968 0.982 0.957 0.976 0.079 0.099 

‘30SolNuC’ 0.964 0.977 0.958 0.970 0.098 0.125 

‘30SolNuLabA’ 0.965 0.981 0.959 0.975 – – 

‘30SolNuLabB’ 0.965 0.981 0.958 0.975 0.109 0.158 

‘30SolNuLabC’ 0.963 0.978 0.961 0.972 0.120 0.170 

‘30VigneA’ 0.968 0.981 0.957 0.975 0.085 0.108 

‘30VigneB’ 0.966 0.977 0.956 0.971 0.083 0.124 

‘30VigneC’ 0.965 0.979 0.958 0.972 0.114 0.145 
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Table 4. Statistical metrics from the validation of Landsat-7 albedo (α) with ground 1358 

measurements from all available sites and days, for each albedo model after and before 1359 

unbiasing (i.e, offset coefficient recomputed: β0’= β0–ME). ME: Bias; RMSEA and RMSER: 1360 

absolute and relative Root Mean Square Errors. 1361 

  [Dataset size 63] 

  Albedo (α) 
Unbiased albedo (α*) 

[ME = 0.000] 
Albedo 
model 

ME RMSEA 
RMSER 

(%) 
RMSEA 

RMSER 

(%) 
m1 -0.002 0.026 14.5 0.026 14.4 
m2 -0.023 0.033 18.7 0.024 13.3 
m3 -0.024 0.033 18.5 0.022 12.6 
m4 -0.011 0.028 15.7 0.026 14.5 
m5 -0.010 0.028 15.6 0.026 14.5 
m6 -0.012 0.029 16.1 0.026 14.6 
m7 -0.014 0.029 16.0 0.025 13.9 
m8 -0.010 0.025 14.1 0.023 13.1 
m9 -0.011 0.029 16.2 0.027 14.9 
m10 -0.018 0.029 16.1 0.023 12.7 
m11 0.009 0.029 16.3 0.028 15.6 
m12 -0.008 0.026 14.3 0.024 13.7 
m13 -0.011 0.027 14.9 0.024 13.6 
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Table 5. Statistical metrics from the validation of Landsat-7 surface temperature (Ts) with 1363 

ground measurements from all available sites and days. Calculations were performed using 1364 

emissivity (ε10.4-12.5µm) defined by Curve A, Curve B or Curve C (see Fig. 3). ME: Bias; 1365 

RMSEA: absolute Root Mean Square Error. 1366 

   Surface temperature (Ts) 

Sites ε10.4-12.5µm 
ME 

(K) 

RMSEA 

(K) 

Dataset  

size 

All sites Curve A 0.6 1.8 59 

All sites 

Curve B 

0.3 1.7 59 

All sites, except Avignon 0.9 1.5 37 

(1) Avignon site -0.08 2.2 22 

(2) Coussouls site 0.9 1.2 4 

(3) Domaine du Merle site 0.5 0.9 12 

(4) Tour du Valat site 0.5 1.6 21 

All sites Curve C -0.14 1.7 59 
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Table 6. Statistical metrics from the validation of Landsat-7 net radiation (Rn) with ground 1368 

measurements from all available sites and days, for each albedo model after and before 1369 

unbiasing (i.e, offset coefficient recomputed: β0’= β0–ME). ME: Bias; RMSEA and RMSER: 1370 

absolute and relative Root Mean Square Errors. 1371 

 Net radiation (Rn, W·m
-2

)   [Dataset size 62] 

Albedo 

model 

Albedo (α) Unbiased albedo (α*) 

ME RMSEA 
RMSER 

(%) 
ME RMSEA 

RMSER 

(%) 

m1 -1.3 18.6 4.4 -2.7 18.9 4.5 

m2 13.7 21.8 5.1 -1.7 18.4 4.3 

m3 14.4 21.8 5.1 -1.5 17.6 4.1 

m4 6.1 21.0 5.0 -0.9 20.6 4.9 

m5 5.7 20.7 4.9 -1.0 20.4 4.8 

m6 6.9 20.9 4.9 -1.0 20.4 4.8 

m7 6.8 18.6 4.4 -2.4 18.5 4.4 

m8 4.6 17.6 4.2 -1.7 17.7 4.2 

m9 5.1 19.4 4.6 -2.4 19.6 4.6 

m10 10.0 19.2 4.5 -1.6 17.4 4.1 

m11 -8.9 22.4 5.3 -3.2 20.1 4.7 

m12 2.9 18.0 4.2 -2.2 18.4 4.3 

m13 5.2 18.4 4.3 -3.0 20.0 4.7 
 1372 

 1373 

 1374 

Table 7. Overview of global uncertainty (δ) in net radiation estimates using Landsat-7 data 1375 

(in bold) and contribution from each term of Eq. (1). Details on uncertainties in net 1376 

radiation (4
th

 column) and uncertainties in intermediate variables (3
rd

 column) due to 1377 

uncertainty in one or several inputs (indicated in columns 2
nd

 and 3
rd

). Three values are 1378 

indicated, generally showing the lowest (29
th

 Dec, 2007), mean (of values from the 29 1379 

days) and highest (8
th

 July, 2008) uncertainty (by considering the median value of each 1380 

image). 1381 

(see next page) 1382 
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Figure 5

Click here to download high resolution image
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Figure 8B

Click here to download high resolution image
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