133 research outputs found
A Lightweight Multilevel Markup Language for Connecting Software Requirements and Simulations
[Context] Simulation is a powerful tool to validate specified requirements especially for complex systems that constantly monitor and react to characteristics of their environment. The simulators for such systems are complex themselves as they simulate multiple actors with multiple interacting functions in a number of different scenarios. To validate requirements in such simulations, the requirements must be related to the simulation runs. [Problem] In practice, engineers are reluctant to state their requirements in terms of structured languages or models that would allow for a straightforward relation of requirements to simulation runs. Instead, the requirements are expressed as unstructured natural language text that is hard to assess in a set of complex simulation runs. Therefore, the feedback loop between requirements and simulation is very long or non-existent at all. [Principal idea] We aim to close the gap between requirements specifications and simulation by proposing a lightweight markup language for requirements. Our markup language provides a set of annotations on different levels that can be applied to natural language requirements. The annotations are mapped to simulation events. As a result, meaningful information from a set of simulation runs is shown directly in the requirements specification. [Contribution] Instead of forcing the engineer to write requirements in a specific way just for the purpose of relating them to a simulator, the markup language allows annotating the already specified requirements up to a level that is interesting for the engineer. We evaluate our approach by analyzing 8 original requirements of an automotive system in a set of 100 simulation runs
Contrast and rate of light intensity decrease control directional swimming in the box jellyfish Tripedalia cystophora (Cnidaria, Cubomedusae)
Box jellyfish respond to visual stimuli by changing the dynamics and frequency of bell contractions. In this study, we determined how the contrast and the dimming time of a simple visual stimulus affected bell contraction dynamics in the box jellyfish Tripedalia cystophora. Animals were tethered in an experimental chamber where the vertical walls formed the light stimuli. Two neighbouring walls were darkened and the contraction of the bell was monitored by high-speed video. We found that (1) bell contraction frequency increased with increasing contrast and decreasing dimming time. Furthermore, (2) when increasing the contrast and decreasing the dimming time pulses with an off-centred opening had a better defined direction and (3) the number of centred pulses decreased. Only weak effects were found on the relative diameter of the contracted bell and no correlation was found for the duration of bell contraction. Our observations show that visual stimuli modulate swim speed in T. cystophora by changing the swim pulse frequency. Furthermore, the direction of swimming is better defined when the animal perceives a high-contrast, or fast dimming, stimulus
Fixational Eye Movements in the Earliest Stage of Metazoan Evolution
All known photoreceptor cells adapt to constant light stimuli, fading the retinal image when exposed to an immobile visual scene. Counter strategies are therefore necessary to prevent blindness, and in mammals this is accomplished by fixational eye movements. Cubomedusae occupy a key position for understanding the evolution of complex visual systems and their eyes are assumedly subject to the same adaptive problems as the vertebrate eye, but lack motor control of their visual system. The morphology of the visual system of cubomedusae ensures a constant orientation of the eyes and a clear division of the visual field, but thereby also a constant retinal image when exposed to stationary visual scenes. Here we show that bell contractions used for swimming in the medusae refresh the retinal image in the upper lens eye of Tripedalia cystophora. This strongly suggests that strategies comparable to fixational eye movements have evolved at the earliest metazoan stage to compensate for the intrinsic property of the photoreceptors. Since the timing and amplitude of the rhopalial movements concur with the spatial and temporal resolution of the eye it circumvents the need for post processing in the central nervous system to remove image blur
Ocular and Extraocular Expression of Opsins in the Rhopalium of Tripedalia cystophora (Cnidaria: Cubozoa)
A growing body of work on the neuroethology of cubozoans is based largely on the capabilities of the photoreceptive tissues, and it is important to determine the molecular basis of their light sensitivity. The cubozoans rely on 24 special purpose eyes to extract specific information from a complex visual scene to guide their behavior in the habitat. The lens eyes are the most studied photoreceptive structures, and the phototransduction in the photoreceptor cells is based on light sensitive opsin molecules. Opsins are photosensitive transmembrane proteins associated with photoreceptors in eyes, and the amino acid sequence of the opsins determines the spectral properties of the photoreceptors. Here we show that two distinct opsins (Tripedalia cystophora-lens eye expressed opsin and Tripedalia cystophora-neuropil expressed opsin, or Tc-leo and Tc-neo) are expressed in the Tripedalia cystophora rhopalium. Quantitative PCR determined the level of expression of the two opsins, and we found Tc-leo to have a higher amount of expression than Tc-neo. In situ hybridization located Tc-leo expression in the retinal photoreceptors of the lens eyes where the opsin is involved in image formation. Tc-neo is expressed in a confined part of the neuropil and is probably involved in extraocular light sensation, presumably in relation to diurnal activity
Curriculum and Teacher Education Reforms in Finland That Support the Development of Competences for the Twenty-First Century
Abstract This chapter analyzes how learning twenty-first century competences has been implemented in the Finnish educational context through the enactment of national and local level curricula and the design of a teacher education development program in a decentralized education system, in which teachers, schools, municipalities, and universities have high autonomy. The curricula and development program emphasize learning twenty-first century competences. Both were designed in collaboration with Finnish teachers and teacher educators, representatives from the Ministry of Education and Culture, the Association of Finnish Local and Regional Authorities, the Teacher’s Union, the Student’s Unions, and the Principal Association. The major actions taken to implement these changes included piloting, seminars and conferences, having different support and local level collaborations, and networking. According to recent evaluations, both endeavors – the development of national and local level curricula and a teacher education development program – have resulted in progress towards implementing twenty-first century competences in schools and for teacher education.Peer reviewe
Clar Sextet Analysis of Triangular, Rectangular and Honeycomb Graphene Antidot Lattices
Pristine graphene is a semimetal and thus does not have a band gap. By making
a nanometer scale periodic array of holes in the graphene sheet a band gap may
form; the size of the gap is controllable by adjusting the parameters of the
lattice. The hole diameter, hole geometry, lattice geometry and the separation
of the holes are parameters that all play an important role in determining the
size of the band gap, which, for technological applications, should be at least
of the order of tenths of an eV. We investigate four different hole
configurations: the rectangular, the triangular, the rotated triangular and the
honeycomb lattice. It is found that the lattice geometry plays a crucial role
for size of the band gap: the triangular arrangement displays always a sizable
gap, while for the other types only particular hole separations lead to a large
gap. This observation is explained using Clar sextet theory, and we find that a
sufficient condition for a large gap is that the number of sextets exceeds one
third of the total number of hexagons in the unit cell. Furthermore, we
investigate non-isosceles triangular structures to probe the sensitivity of the
gap in triangular lattices to small changes in geometry
Complete larval development of the hermit crabs Clibanarius aequabilis and Clibanarius erythropus (Decapoda : Anomura : Diogenidae), under laboratory conditions, with a revision of the larval features of genus Clibanarius
The complete larval development (four zoeae and one megalopa) of Clibanarius aequabilis and C. erythropus, reared under laboratory conditions, is described and illustrated. The larval stages of the two northeastern Atlantic Clibanarius species cannot be easily differentiated. Their morphological characters are compared with those of other known Clibanarius larvae. The genus Clibanarius is very homogeneous with respect to larval characters. All Clibanarius zoeae display a broad and blunt rostrum, smooth abdominal segments and an antennal scale without a terminal spine. Beyond the second zoeal stage, the fourth telson process is present as a fused spine, and the uropods are biramous. In the fourth larval stage all species display a mandibular palp. The Clibanarius megalopa presents weakly developed or no ocular scales, symmetrical chelipeds, apically curved corneous dactylus in the second and third pereiopods, and 5-11 setae on the posterior margin of the telson. Apart from the number of zoeal stages, Clibanarius species may be separated, beyond the second zoeal stage, by the telson formula and the morphology of the fourth telson process.info:eu-repo/semantics/publishedVersio
- …