
This version is available at https://doi.org/10.14279/depositonce-8300

Copyright applies. A non-exclusive, non-transferable and limited
right to use is granted. This document is intended solely for
personal, non-commercial use.

Terms of Use

The final authenticated version is available online at https://doi.org/10.1007/978-3-030-15538-4_11

Pudlitz, F., Vogelsang, A., & Brokhausen, F. (2019). A Lightweight Multilevel Markup Language for
Connecting Software Requirements and Simulations. In Structured Object-Oriented Formal Language and
Method (pp. 151–166). Springer International Publishing.
https://doi.org/10.1007/978-3-030-15538-4_11

Florian Pudlitz, Andreas Vogelsang, Florian Brokhausen

A Lightweight Multilevel Markup Language
for Connecting Software Requirements
and Simulations

Accepted manuscript (Postprint)Conference paper |

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DepositOnce

https://core.ac.uk/display/195775864?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Lightweight Multilevel Markup Language for
Connecting Software Requirements and

Simulations

Florian Pudlitz[0000−0002−0006−1853], Andreas Vogelsang[0000−0003−1041−0815],
and Florian Brokhausen

Technische Universität Berlin, Germany
{florian.pudlitz,andreas.vogelsang}@tu-berlin.de,

florian.brokhausen@campus.tu-berlin.de

Abstract. [Context] Simulation is a powerful tool to validate speci-
fied requirements especially for complex systems that constantly moni-
tor and react to characteristics of their environment. The simulators for
such systems are complex themselves as they simulate multiple actors
with multiple interacting functions in a number of different scenarios.
To validate requirements in such simulations, the requirements must be
related to the simulation runs. [Problem] In practice, engineers are re-
luctant to state their requirements in terms of structured languages or
models that would allow for a straightforward relation of requirements to
simulation runs. Instead, the requirements are expressed as unstructured
natural language text that is hard to assess in a set of complex simulation
runs. Therefore, the feedback loop between requirements and simulation
is very long or non-existent at all. [Principal idea] We aim to close the
gap between requirements specifications and simulation by proposing a
lightweight markup language for requirements. Our markup language
provides a set of annotations on different levels that can be applied to
natural language requirements. The annotations are mapped to simula-
tion events. As a result, meaningful information from a set of simulation
runs is shown directly in the requirements specification. [Contribution]
Instead of forcing the engineer to write requirements in a specific way
just for the purpose of relating them to a simulator, the markup language
allows annotating the already specified requirements up to a level that
is interesting for the engineer. We evaluate our approach by analyzing 8
original requirements of an automotive system in a set of 100 simulation
runs.

Keywords: Markup language · requirements modeling · simulation ·
test evaluation.

1 Introduction

In many areas, software systems are becoming increasingly complex through the
use of open systems, highly automated or networked devices. The complexity

2 F. Pudlitz et al.

leads to an increasing number of requirements, which are often expressed in
natural language [9]. To master the complexity of development and test man-
agement, simulation is increasingly being used to anticipate system behavior in
complex environments. Simulation has several advantages over classic testing.
Tests only pass or fail, but there is little information about the contextual situ-
ation. Additionally, simulations are more flexible towards covering variations in
context behavior.

However, in current practice and especially in large companies, simulation
and requirements activities are often not aligned. Simulation scenarios are not
derived from requirements but handcrafted by specialized simulation engineers
based on their own understanding of the problem domain. On the other hand,
the results of simulation runs are not fed back to the level of requirements, which
means that a requirements engineer does not benefit from the insights gained by
running the simulation. This misalignment has several reasons. First, require-
ments engineering and simulation is often conducted in different departments.
Second, simulators are complex systems that need to be configured by simulation
experts. That makes it hard for requirements engineers to use simulators. Third,
requirements and simulations are on different levels of abstraction which makes
it hard to connect events generated by the simulation to requirements, especially,
when they are written in natural language. As a result, the simulation scenarios
are often unrealistic and do not ensure that all requirements are covered.

Modeling can help closing this gap between requirements and simulation.
However, if the necessary models are too formal, requirements engineers fear the
effort to model the requirements. Therefore, we propose a lightweight modeling
approach that allows engineers to annotate their natural language requirements
instead of expressing them as models. Based on these annotations, the respective
part of a requirement can be linked to a simulation event. By analyzing logs of
simulation runs for the linked simulation events, we can feed back information
about system execution to the level of the annotations and thereby to the level
of requirements. The available annotations build a markup language. A distinct
feature of our markup language is that it contains annotations on different levels
of detail. An engineer can decide how detailed he or she wants to annotate a re-
quirement. The more detailed a requirement is annotated, the more information
can be retrieved from a simulation run.

In this paper, we present the general idea of our approach, the details of the
markup language, and an evaluation on a Cornering Light System. Our approach
provides a minimal invasive way to connect (existing) requirements with simula-
tion. Thereby, requirements engineers can profit from insights gained by simula-
tion much faster and without having to invest in extensive modeling efforts. The
requirements engineer gets feedback whether the requirements are covered by the
current selection of simulation scenarios and whether there are misconceptions in
the requirements that are uncovered by the simulation (e.g. false assumptions).

Lightweight Multilevel Markup Language 3

2 Background and Related Work

Testing and Simulation: Software Testing is the verification that a software
product provides the expected behavior, as specified in its requirements. The
conventional development and testing process for complex systems is based on
the V-model, which structures the development process into phases of decom-
position of the system elements and their subsequent integration. Each require-
ment being specified on a certain level of abstraction is reflected by a test case
on the same level which determines whether the requirement has been imple-
mented correctly. The increasing complexity of the systems, the many possible
test cases, and the uncertainty about the system’s context challenge this conven-
tional testing process. Therefore, the use of simulations is becoming more and
more popular.

Simulation is the imitation of the operation of a real-world process or sys-
tem [1]. The act of simulating something first requires that a model is developed;
this model incorporates the key characteristics, behavior, and functions of the
selected physical or abstract system or process. A simulator is a program that is
able to run a simulation. Each simulation run is one execution of the simulation.

When simulation is used in a systems development process, the model usually
consists of a submodel that describes the system-under-development (SuD) and
one or several submodels that describe the operational environment of the SuD.
The simulation represents the operation of the SuD within its operational context
over time.

A simulation scenario defines the initial characteristics and preliminaries of
a simulation run and spans a certain amount of time. The scenario defines the
global parameters of the operational context model. The model of the SuD is
not affected by the definition of the simulation scenario. Therefore, a simulation
scenario can be compared to a test case in a conventional testing processes. The
expectation is that the SuD performs according to its desired behavior in a set
of representative simulation scenarios.
Requirements and Test Alignment: Alignment of requirements and test
cases is a well-established field of research and several solutions exist.
Barmi et al. [2] found that most studies of the subject were on model-based
testing including a variety of formal methods for describing requirements with
models or languages. In model based testing, informal requirements of the sys-
tem are the base for developing a test model which is a behavioral model of the
system. This test model is used to automatically generate test cases. One prob-
lem in this area is that the generated tests from the model cannot be executed
directly against an implementation under test because they are on different lev-
els of abstraction. Additionally, the formal representation of requirements often
results in difficulties both in requiring special competence to produce [10], but
also for non-specialist (e.g. business people) in understanding the requirements.
The generation of test cases directly from the requirements implicitly links the
two without any need for manually creating (or maintaining) traces [3]. However,
depending on the level of abstraction of the model and the generated test cases,
the value of the traces might vary. For example, for use cases and system test

4 F. Pudlitz et al.

cases, the tracing was reported as being more natural in comparison to using
state machines [5]. Errors in the models are an additional issue to consider when
applying model-based testing [5].

Lightweight Requirements Modeling: The use of constrained natural lan-
guage is an approach to create requirements models while keeping the appearance
of natural language. Several authors propose different sets of sentence patterns
that should be used to formulate requirements [8, 4]. Besides the advantage that
requirements are uniformly formulated, the requirements patterns enrich parts of
the requirement with information about the semantics. This information can be
used to extract information from the requirements. Lucassen et al., for example,
use the structure of user stories to automatically derive conceptual models of the
domain [7]. With our approach, we try to combine the strength of lightweight
requirements annotations with the potential to be enriched with behavioral in-
formation collected in simulations.

End-to-end Tooling: A comparable approach to validate requirements within
a testing and simulation environment in an end-to-end fashion is presented by
the tool Stimulus by software company Argosim1. Stimulus lets the user define
formalized requirements and enrich the system under development with state ma-
chines and block diagrams to include behavioral and architectural information,
respectively. With the help of a build-in test suite, signals from the environment
on which the systems depends and reacts can be simulated. The system behav-
ior within these simulations is evaluated with regards to its constraints specified
by the requirements and violations are detected. The main features include the
detection of contradicting and missing requirements.

This tooling approach however exhibits some major differences to the method-
ology proposed in this paper. First and foremost, the form in which requirements
are drafted in Stimulus is in a highly formalized manner from which this approach
is to be differentiated. While there are many efforts within the research commu-
nity to explicitly formalize requirements to improve on their validation possibil-
ities [2], this markup language aims to provide the requirements engineer with a
means to intuitively annotate natural language requirements in order to unfold
the implicitly contained information in a way it can be used for validation pur-
poses within a simulation. Secondly, the testing capability provided by Stimulus
depends on the user to define inputs to the system and assign a range of values to
them for test execution. This step however shall be automated with the proposed
approach. From the data provided by the markups, a scenario for the simulation
environment will be constructed, which evaluates the underlying constraints.

3 Approach

Our approach is schematically displayed in Figure 1. The starting point is a
document of requirements formulated in natural language containing software
specifications. The present requirements are written without pattern or other

1 www.argosim.com

Lightweight Multilevel Markup Language 5

grammatical restrictions. With elements of our markup language the engineer
marks key phrases. These are matched with signals of the simulation and sys-
tem, which is called a mapping. The simulation is created automatically and the
resulting scenario contains configurations of the simulation environment influ-
enced by the selections made in the requirements. Simulation results are output
as log files, which in connection with the mapping results, are fed back to the
original requirements document. In addition to log data from traffic simulations,
it is also possible to use real driver log data. In this way, real log data can be
matched with natural language requirements. The simulation results or real data
are displayed directly in the originally analyzed phrases.

In contrast to state of the art procedures, there is no necessity for translation
into executable languages. Therefore, the entire scope of simulation options of
the natural language requirements remains without any translation loss. Another
improvement of today’s standards lies in the testability of software at any state
of development. First behaviors of the software can be simulated with simple
markings early in the development process. Especially new assistance systems
or functions such as autonomous driving are very complex and can only be
tested with complex simulations. The test engineers therefore need a lightweight
approach to evaluate requirements without formal translation.

R1:

R2:

R3:

Requirements Simulation

A SigA

B SigB

C SigC

Mapping

Fig. 1. Schematic representation of a requirements specification linked to a simulation
with influencing intermediate steps

3.1 Markup Language

For marking software functions and environment conditions, we developed a
lightweight multilevel markup language to connect requirements specifications
and simulation runs. We developed our markup language to meet four demands.

First, a lightweight, intuitive approach for marking objects in natural lan-
guage software requirements.

Second, a possibility to observe single objects as well as complex relations
between elements in the simulation without a formal translation.

Third, an extraction of important simulation environment properties that
must occur in the simulation.

6 F. Pudlitz et al.

Fourth, a possibility to evaluate software behavior already during the devel-
opment process.

The resulting language consists of elements, which are assigned to phrases
in the natural language requirements documents with defined content character-
istics. This part of the process is performed by an engineer and is the starting
point for the automated evaluation by the tool. Each element is assigned to one
of four levels, which define the level of detail of the evaluation.
Elements: Elements are the basic component of our markup language. Avail-
able elements and their description are shown in Table 1. It also shows, how the
elements are strictly associated with different levels of detail. The correct under-
standing of the elements by the engineer is crucial, since the manually performed
labeling effects the type of automated simulation evaluation.
Levels: Figure 2 shows the four levels with the associated elements. The prop-
erties as well as the limits of the levels are explained in the following.

L1: Scope-Level

L2: Type-Level

L3: Condition-Level

L4: Causality-Level

System Environment

Value{L1} State{L1} Event{L1} Time

{L3}-Trigger
{L3}-Pre-Condition

{L3}-Action

Le
ve

l o
f

D
et

ai
l

Value{L1}-Condition
State{L1} -Condition
Event{L1} -Condition
Time -Condition

Fig. 2. Overview of levels and elements

The Scope-Level is used to differentiate between information on the system
and on the simulation environment. As a result, the appearance of the objects
in the simulation is displayed. However, no further information is available.

The Type-Level distinguishes the phrase of Level 1 into different types of text
phrases depending on the behavior in the system. The different Level 2-types
influence the type of evaluation and are the basis for the definition of conditions
in Level 3.

The Condition-Level connects a type of Level 2 with a specific value via
comparison operators to create condition statements. However, the formulated
conditions have no connection among each other.

The Causality-Level establishes a relationship between the conditions of
Level 3 and creates causal relationships. This requires detailed knowledge of the
system and the necessary work process performed by the user is time consuming.
The result however is an in-depth evaluation.

3.2 Marking Requirements

There are two main motivations to use this approach: to find information needed
in order to choose a suitable simulation scenario; and to check or monitor

Lightweight Multilevel Markup Language 7

Table 1. Overview of all elements

Level Element Description

1

System

describes all information concerning the system, includ-
ing any property perceptible from the outside as well as
internal information. Result: link to signal available or
not available.

Environment

describes information on the simulation environment
(e.g., weather) and simulation properties (e.g., simula-
tion duration), and checks fulfillment of scenarios before
a simulation run. Result: link to signal available or not
available.

2

Value{L1}

characterized by a value-continuous range and linked to
system or environment. Result: progression over simula-
tion time.

State{L1}

describes objects with multiple possible, but exclusive
states (e.g., door - open/closed). Result: all appearing
states.

Event{L1}

once or sporadically occurring object, often associated
with signals. Result: number of appearances and average
intermediate time.

Time
concrete time specifications; automatically linked to sim-
ulation time. Result: not presented.

3

Value{L1}-Condition
values of Level 2 linked by <;≤; =;>;≥; 6= with a number
or parameter. Result: duration of the fulfilled condition.

State{L1}-Condition

states of Level 2 linked by = or 6= with a possible state.
Result: frequency, and duration in percent of the fulfilled
condition.

Event{L1}-Condition

event from Level 2 with the values 1 or 0 for appearance
and non-appearance. Result: number of appearances and
average intermediate time.

Time-Condition

time statements from Level 2 linked by <;≤; =;>;≥
or by natural language expressions such as “longer,”
“shorter,” or “within”; must be linked to other condi-
tions as an extension of other Level 3 conditions. Result:
not presented.

4

{L3}-Trigger

Level 3 statements linked by AND,OR; if condition is
fulfilled, {L3}-Action is triggered. Result: number of ap-
pearances.

{L3}-Pre-Condition

Level 3 statements linked by AND,OR; pre-condition
must be fulfilled in order to start a {L3}-Action. Result:
number of appearances in total and as pre-condition with
percentage.

{L3}-Action

Level 3 statements linked together; following a {L3}-
Trigger or {L3}-Pre-Condition. Result: number of ap-
pearance.

8 F. Pudlitz et al.

functionalities of a software component in different states of development. Our
markup language facilitates the highlighting of necessary information and the
observation in the simulation with an adaptable level of detail.

Figure 3 shows three example requirements [CL-1, CL2, CL-3] of a Cornering
Light in a car, which is automatically switched on when turning. The dynamic
and static cornering light function improves illumination of the road ahead when
cornering.

ID Object Text

CL-1
At v < vMaxInd, the indicator has priority over

the steering wheel angle (e.g., roundabout)

CL-2 Cornering light is activated according to the active

indicator

CL-3 Cornering light is deactivated at v > vMax

Requirement Specification: Cornering Light

Environment

StateS

L1/L2

L2

L2

StateS

ValueS

StateS
ValueS

Fig. 3. Example of requirements of a Cornering Light System with initial marks of
elements on Level 1 and 2

CL-1 contains Level 1 (Environment) and Level 2 (StateS and ValueS) mark-
ings. If the aim is to ensure the presence of a roundabout in the simulation, this
element will be marked with “Environment”. The “State” mark for the indica-
tor represents all occurring states. To observe the angle of the steering wheel
and to evaluate the simulation duration, the choice of Level 2 mark “Value” is
necessary.

CL-2 and CL-3 contain only Level 2 (StateS) markings. The subscript S
stands for system; the subscript E describes an element of the simulation en-
vironment. Concerning objects of the environment, their occurrence is checked
before runtime of the simulation scenario.

Figure 4 shows the identical requirements with an unchanged CL-1, but con-
tinually edited Level 2 objects in CL-2 and CL-3. By linking these objects to a
newly marked condition, a Level 3 statement was created. A special feature is the
link of a time condition in order to extend another condition. A time condition
can exclusively be linked to other conditions.

In Figure 5, which is again showing the identical requirements, the Level 3
elements in CL-3 are brought into a relationship with each other by manually
selecting them. By this causal relationship, Level 4 is reached.

Figure 5 displays the result of the development process performed by the
engineer, in this example with appearance of all four levels. With these marked

Lightweight Multilevel Markup Language 9

ID Object Text

CL-1
At v < vMaxInd, the indicator has priority over

the steering wheel angle (e.g., roundabout)

CL-2
Cornering light is activated according to the active

indicator

CL-3
Cornering light is deactivated at v > vMax

Requirement Specification: Cornering Light

Environment

StateS

Cornering Light = activated

Cornering Light = deactivated
ValueS-Condition StateS-Condition

StateS

ValueS

StateS ValueS

v > vMax

StateS-Condition

L1/L2

L3

L3

Fig. 4. Example of Requirements of a Cornering Light System with adopted marks
with increasing complexity on Level 1, 2 and 3

ID Object Text

CL-1
At v < vMaxInd, the indicator has priority over

the steering wheel angle (e.g., roundabout)

CL-2
Cornering light is activated according to the active

indicator

CL-3
Cornering light is deactivated at v > vMax

Requirement Specification: Cornering Light

Environment

StateS

Cornering Light = activated

Cornering Light = deactivated

TRIGGER ACTION

StateS

ValueS

StateS ValueS

v > vMax

StateS-Condition

L1/L2

L3

L4

Fig. 5. Example of requirements of a Cornering Light System with complex marks on
Level 1,2,3 and 4

requirements, simulations can now be carried out and evaluated in different
depth of detail.

3.3 Simulation Execution and Representation

Before the start of the simulation, the marked text passages are mapped to sig-
nal names, like shown in Table 2. The signal names may be internal signals of
the system or signals of the simulation environment. However, mapping is not
always feasible if the matching signal does not exist in the simulation. This might
indicate that the choice of scenario is not suitable or that the state of develop-
ment is still too early. Nonetheless, it is still possible to start the simulation and
just validate a subset of the system requirements. Further, the markups from
the text and the signals from the simulation are not necessarily a one-to-one but

10 F. Pudlitz et al.

can also be established as a one-to-many mapping. The expressions “Cornering
Light” and “indicator” in Table 2 demonstrate such a mapping. When tested in
a simulation run, either of the two mapped signals can produce validation results
for the annotated requirement since both should exhibit the same behavior ac-
cording to their shared specification. After the preparation of the requirements

Table 2. Mapping from natural language expressions to signal names

signals

roundabout → <RB Stat>
vehicle speed → <V vehicle>

steering wheel angle → <Angle>

Cornering light → <CL Left Stat>
<CL Right Stat>

indicator → <Indicator Left Stat>
<Indicator Right Stat>

constants
vMax → 55

vMaxInd → 30

document, the simulation can now be started. An excerpt of a possible result-
ing log file after running the simulation with CL-1, CL-2 and CL-3 is shown in
Table 3.

Table 3. Excerpt of a log file

Vehicle ID Source Target Signal Value Time

veh 1 centralBox ECU V vehicle 40 88.010

veh 1 indicator ECU Indicator Left Stat 0 88.020

veh 1 cl ECU CL Left Stat 0 88.030

veh 1 centralBox ECU Angle 0 88.040

veh 1 centralBox ECU V vehicle 25 89.010

veh 1 indicator ECU Indicator Left Stat 1 89.020

veh 1 cl ECU CL Left Stat 1 89.030

veh 1 centralBox ECU V vehicle 20 90.010

veh 1 centralBox ECU Angle 10 90.040

veh 1 centralBox ECU V vehicle 20 91.010

veh 1 centralBox ECU Angle 90 91.040

veh 1 centralBox ECU V vehicle 25 92.010

veh 1 centralBox ECU Angle 10 92.040

veh 1 centralBox ECU V vehicle 40 93.010

veh 1 indicator ECU Indicator Left Stat 0 93.020

veh 1 cl ECU CL Left Stat 0 93.030

veh 1 centralBox ECU Angle 0 93.040

The log data provided shows that the indicator is turned on at simulation
time 89.020. The vehicle speed being 25 km/h fulfills the condition for the cor-
nering light to be turned on, which the simulation log shows occurred at time

Lightweight Multilevel Markup Language 11

89.030. The values of the vehicle speed and steering angle then indicate that the
vehicle made a turn. After the successful turn the indicator is turned off at time
93.020, which leads to the disabling of the cornering light. The table does not
show the values of the indicator and the cornering light for simulation time 90
through 92, since no changes occurred during that time; with the indicator acti-
vated and the velocity under 30 km/h, the cornering light keeps being activated
as intended.

This example of a small selection of requirements in a simple simulation
scenario emphasizes the possible dimensions of a log file based on a whole re-
quirements document with a comprehensive simulation. The extent also increases
with the simulation duration.

An essential feedback mechanism is the presentation of the results in the
original requirements document, depending on the chosen elements in the re-
quirements and the analysis of the log data. Figure 6 shows the presentation of
the evaluation results based on the simulation run in the presented example.

Fig. 6. Resulting marks of a simulation evaluation

In CL-1, the environment phrasing “roundabout” is mapped to the signal
“RB Stat”. The element “indicator” belongs to Level 2, therefore all occurring
states can be displayed. In contrast, “steering wheel angle” is a value and an
element of Level 2 and therefor it can be displayed graphically over the entire
simulation time. If the steering wheel is turned to the left, the value is negative,
so right turns are positive. Values below 20 degrees are lane changes. Large peaks
between 45 and 90 degrees show the process of turning off.

In Cl-2, two conditions belonging to Level 3 are displayed. Depending on the
selected condition, the according number of appearances is output. Additional in-

12 F. Pudlitz et al.

formation on State{L1}-Conditions is the percentage of fulfillment over the simu-
lation duration. For Event{L1}-Conditions, information about average occurrence
is available. The possibility of linking these conditions by Time-Conditions is not
displayed; however the latter can not be used alone.

In CL-3, a Trigger and a dependent Action as elements of Level 4 are shown.
Regarding the Trigger, information on total appearance is available. Further Ac-
tion-related information is the number of appearances. In combination with the
excerpt of the log file, the tool can confirm the causality of CL-3 and consequen-
tially the given requirement as fulfilled.

The given example illustrates the influence of the specification degree on pos-
sible evaluation options. For basic analysis or early system development stages,
lower and less time-consuming evaluation levels are suitable. However the tool
also includes more complex options of evaluation. Though increasing complexity
requires an increasing effort, evaluation and validation of entire requirements is
possible.

4 Experiment

The approach was used in the automotive context to perform an experiment.
Two aspects were examined: practicality of the language and identification of
errors in its implementation. The following paragraph describes the structure,
and execution. After that, results of the experiment as well as a summary of the
advantages and disadvantages are subject of discussion.

4.1 Experimental Design

Object of the experiment are natural language requirements of Daimler AG.
The used specifications describe the Intelligent Light System. Overall, the spe-
cification contains 3464 requirements and is divided into various subsystems.
Among other things, it includes cross light, motorway light and cornering light.
The requirements of the cornering light system used in Chapter 3 is extended
by four further requirements and implemented in a separate vehicle function.
All used requirements are part of an export of a DOORS database. They are
written in natural language without limitation to patterns, or other structural
or grammatical constraints. To carry out the marking process, the requirements
are managed in a self-developed tool. The test engineer chooses a selection of
marks according to the desired levels of results. In the presented experiment,
the engineer marks a total of 13 text passages on all 4 levels, consisting of two
markings on Level 1 and 2, five markings on Level 3 and four on Level 4.

Next step is linking the marked text passages to the signals of the simulation.
This supports the creation of a scenario, which itself is the starting point for the
simulation framework VSimRTI [11]. This framework links different simulators
together and enables the virtual modeling of complex systems. Major simulator
is the tool SUMO [6] developed by DLR, used for traffic simulation. VSimRTI
makes it possible to equip SUMO vehicles with additional self-developed func-
tions. An excerpt of an OpenStreetMap of Berlin is used for a realistic road

Lightweight Multilevel Markup Language 13

network and traffic light settings. Inclusion of all environment properties from
Level 1 is checked before the start of the simulation run. The simulation run is
performed 100 times with varying driving routes and an average of 53 vehicles
involved. Each run is taking 163 seconds.

The vehicle function essentially consists of three parts: two cornering lights
(left and right), and a central control unit. All components in the vehicle com-
municate via a virtual data bus, which is a modeled CAN communication. Each
message sent and received via the bus is also written to a log file. This log file
contains the time stamp, sender and recipient of the message. In addition, for
each simulation step, vehicle data such as the steering angle, vehicle speed and
status of the indicators are included in the log data. Following the simulation,
the log data of all 100 vehicles is loaded by the developed tool. Evaluating these
log data with the signal mapping from the initial step is closing the loop.

4.2 Results and Discussion

The tool reads the log data and provides the results, depending on the marks
and the selected levels, in three categories: requirement fulfilled in green and not
fulfilled in red (available for Level 1 and 4); and information available in blue
(available for Level 2 and 3).

Figure 7 shows the presentation of the results in the original requirements
for this experiment. Level 1, 2 and 3, as part of CL-1, CL-2 and CL-4, show the
evaluation of word groups. One colored markup is displaying the results over
the 100 simulation runs. Level 4 displays the evaluation of a causal connection
between two items. For example in CL-3, v > vMax was marked as trigger for
the action Cornering light is deactivated. Since the requirement is fulfilled over
the entire simulation time, it is colored green.

Even more complex are the requirements CL-5, CL-6 and CL-7, which also
include Level 4 evaluations. Here, the triggers and actions have been marked
and linked with each other across several requirements. The triggers indicator
is deactivated (CL-5), v < vMax (CL-5) and curve radius > angleOff (CL-
6) belong to the action Cornering light is deactivated in CL-6. A third Level 4
causality is also made up of the triggers from CL-5. In addition, the trigger
curve radius < angleOff (CL-7) is connected with all three triggers of CL-5
and the action Cornering light is activated in CL-7. The results are displayed in
the requirement with the included action.

The major issue concerning all development approaches is the discrepancy
between natural language requirements specifications and functionality of the
software. The approach presented here bridges the gap between requirements on
the one hand and simulative testing on the other. Particularly complex systems
can be studied by the lightweight method at each stage of development. The
mapping process is currently done manually and is time consuming for large
software systems. However, if the presented approach is used parallel to the
development, the mapping can also be maintained in parallel. New systems can
build on previous mappings. Nevertheless, more research will be needed in an
automated mapping process. Another challenge are changing software design

14 F. Pudlitz et al.

Fig. 7. Resulting marks of a simulation evaluation

decisions during the development process, which are not immediately updated
in the original requirements documents. At present, this is performed at a later
time, where some of the simulation and testing has already taken place. In our
approach, the updates still have to be performed manually. However, the software
engineer is motivated to perform the changes right away, so that the requirements
documents always stay current and discrepancies during testing are prevented.

As the experiment shows, the evaluation can partly be sophisticated. This,
however, is due to the complex requirements, which today are manually frag-
mented for testing. Our approach makes structuring and testing of conditions
over multiple requirements possible.

5 Conclusion and Outlook

Complex software systems are based on ever larger requirement documents. In-
creasingly, these systems are being tested in simulations. State of the art is the
translation of natural language requirements into executable models. Nowadays,
the original requirements documents rarely influence the simulations and sim-
ulation results are usually not fed back to the specifications. Our lightweight
multilevel markup language combines natural language requirements with sim-
ulations. Depending on the development stage, software functions can be mo-
nitored or complex requirements can be tested. The degree of detail of the eval-
uation can be determined by the tester. In our approach, there is no necessity

Lightweight Multilevel Markup Language 15

for translating original requirements documents. Our experiment with 100 sim-
ulation runs of a Cornering Light System, the processing procedure, and the
evaluation report illustrates its usability and emphasizes the relevance to large
and complex requirements documents.

In future, we plan further steps for automation. One possible approach can
be the manual signal mapping automated through the use of machine learning.
Another improvement might be automated identification of Level 2 states with
natural language processing methods, which are subject of recent research. Due
to the rapid increase of model-based development, markups in UML diagrams
are also a focus of research.

References

1. Banks, J., Carson, J.S., Nelson, B.L., Nicol, D.M.: Discrete-Event System Simula-
tion. Prentice Hall (2000)

2. Barmi, Z.A., Ebrahimi, A.H., Feldt, R.: Alignment of requirements specifica-
tion and testing: A systematic mapping study. In: IEEE International Con-
ference on Software Testing, Verification and Validation Workshops (2011).
https://doi.org/10.1109/ICSTW.2011.58

3. Bjarnason, E., Runeson, P., Borg, M., Unterkalmsteiner, M., Engström, E.,
Regnell, B., Sabaliauskaite, G., Loconsole, A., Gorschek, T., Feldt, R.: Chal-
lenges and practices in aligning requirements with verification and validation:
a case study of six companies. Empirical Software Engineering 19(6) (2014).
https://doi.org/10.1007/s10664-013-9263-y

4. Eckhardt, J., Vogelsang, A., Femmer, H., Mager, P.: Challenging incompleteness of
performance requirements by sentence patterns. In: IEEE International Require-
ments Engineering Conference (RE) (2016)

5. Hasling, B., Goetz, H., Beetz, K.: Model based testing of system requirements
using UML use case models. In: International Conference on Software Testing,
Verification, and Validation (2008). https://doi.org/10.1109/ICST.2008.9

6. Krajzewicz, D., Bonert, M., Wagner, P.: The open source traffic simulation package
sumo (06 2006)

7. Lucassen, G., Robeer, M., Dalpiaz, F., van der Werf, J.M.E.M., Brinkkemper, S.:
Extracting conceptual models from user stories with visual narrator. Requirements
Engineering 22(3) (2017). https://doi.org/10.1007/s00766-017-0270-1

8. Mavin, A., Wilkinson, P., Harwood, A., Novak, M.: Easy approach to require-
ments syntax (ears). In: 2009 17th IEEE International Requirements Engineering
Conference. pp. 317–322 (2009). https://doi.org/10.1109/RE.2009.9

9. Mich, L., Franch, M., Novi Inverardi, P.: Market research for requirements analysis
using linguistic tools. Requirements Engineering 9(2), 151–151 (2004)

10. Nebut, C., Fleurey, F., Traon, Y.L., Jezequel, J.M.: Automatic test generation:
a use case driven approach. IEEE Transactions on Software Engineering 32(3)
(2006). https://doi.org/10.1109/TSE.2006.22

11. Schünemann, B.: V2x simulation runtime infrastructure vsimrti: An assessment
tool to design smart traffic management systems. Computer Networks 55(14),
3189 – 3198 (2011)

