153 research outputs found

    Understanding barriers and outcomes of unspecified (non-directed altruistic) kidney donation from both professional's and patient's perspectives: research protocol for a national multicentre mixed-methods prospective cohort study.

    Get PDF
    INTRODUCTION: Living donation accounts for over one-third of all kidney transplants taking place in the UK. 1 The concept of anonymously donating a kidney to a stranger (non-directed altruistic or unspecified kidney donation (UKD)) remains uncomfortable for some clinicians, principally due to concerns about the motivations and long-term physical and psychological outcomes in this donor group. AIMS: The research programme aims to provide a comprehensive assessment of the unspecified donor programme in the UK. It aims to identify reasons for variations in practice across centres, explore outcomes for donors and ascertain barriers and facilitators to UKD, as well as assess the economic implications of unspecified donation. METHODS: The research programme will adopt a mixed-methods approach to assessing UKD nationally using focus groups, interviews and questionnaires. Two study populations will be investigated. The first will include transplant professionals involved in unspecified kidney donation. The second will include a 5-year prospective cohort of individuals who present to any of the 23 UK transplant centres as a potential unspecified living kidney donor. Physical and psychological outcomes will be followed up to 1 year following donation or withdrawal from the donation process. A matched sample of specified donors (those donating to someone they know) will be recruited as a control group. Further qualitative work consisting of interviews will be performed on a purposive sample of unspecified donors from both groups (those who do and do not donate). DISSEMINATION: The findings will be reported to NHS Blood and Transplant and the British Transplant Society with a view to developing national guidelines and a protocol for the management of those presenting for unspecified donation. TRIAL REGISTRATION NUMBER: ISRCTN23895878, Pre-results

    The magnitude and timing of recalled immunity after breakthrough infection is shaped by SARS-CoV-2 variants

    Full text link
    Vaccination against SARS-CoV-2 protects from infection and improves clinical outcomes in breakthrough infections, likely reflecting residual vaccine-elicited immunity and recall of immunological memory. Here, we define the early kinetics of spike-specific humoral and cellular immunity after vaccination of seropositive individuals and after Delta or Omicron breakthrough infection in vaccinated individuals. Early longitudinal sampling revealed the timing and magnitude of recall, with the phenotypic activation of B cells preceding an increase in neutralizing antibody titers. While vaccination of seropositive individuals resulted in robust recall of humoral and T cell immunity, recall of vaccine-elicited responses was delayed and variable in magnitude during breakthrough infections and depended on the infecting variant of concern. While the delayed kinetics of immune recall provides a potential mechanism for the lack of early control of viral replication, the recall of antibodies coincided with viral clearance and likely underpins the protective effects of vaccination against severe COVID-19

    Analytic philosophy for biomedical research: the imperative of applying yesterday's timeless messages to today's impasses

    Get PDF
    The mantra that "the best way to predict the future is to invent it" (attributed to the computer scientist Alan Kay) exemplifies some of the expectations from the technical and innovative sides of biomedical research at present. However, for technical advancements to make real impacts both on patient health and genuine scientific understanding, quite a number of lingering challenges facing the entire spectrum from protein biology all the way to randomized controlled trials should start to be overcome. The proposal in this chapter is that philosophy is essential in this process. By reviewing select examples from the history of science and philosophy, disciplines which were indistinguishable until the mid-nineteenth century, I argue that progress toward the many impasses in biomedicine can be achieved by emphasizing theoretical work (in the true sense of the word 'theory') as a vital foundation for experimental biology. Furthermore, a philosophical biology program that could provide a framework for theoretical investigations is outlined

    Gaia Data Release 2: Calibration and mitigation of electronic offset effects in the data

    Get PDF
    The European Space Agency Gaia satellite was launched into orbit around L2 in December 2013. This ambitious mission has strict requirements on residual systematic errors resulting from instrumental corrections in order to meet a design goal of sub-10 microarcsecond astrometry. During the design and build phase of the science instruments, various critical calibrations were studied in detail to ensure that this goal could be met in orbit. In particular, it was determined that the video-chain offsets on the analogue side of the analogue-to-digital conversion electronics exhibited instabilities that could not be mitigated fully by modifications to the flight hardware. We provide a detailed description of the behaviour of the electronic offset levels on microsecond timescales, identifying various systematic effects that are known collectively as offset non-uniformities. The effects manifest themselves as transient perturbations on the gross zero-point electronic offset level that is routinely monitored as part of the overall calibration process. Using in-orbit special calibration sequences along with simple parametric models, we show how the effects can be calibrated, and how these calibrations are applied to the science data. While the calibration part of the process is relatively straightforward, the application of the calibrations during science data processing requires a detailed on-ground reconstruction of the readout timing of each charge-coupled device (CCD) sample on each device in order to predict correctly the highly time-dependent nature of the corrections. We demonstrate the effectiveness of our offset non-uniformity models in mitigating the effects in Gaia data. We demonstrate for all CCDs and operating instrument and modes on board Gaia that the video-chain noise-limited performance is recovered in the vast majority of science samples

    Investigation into the cause of spontaneous emulsification of a free steel droplet : validation of the chemical exchange pathway

    Get PDF
    Small Fe-based droplets have been heated to a molten phase suspended within a slag medium to replicate a partial environment within the basic oxygen furnace (BOF). The confocal scanning laser microscope (CSLM) has been used as a heating platform to interrogate the effect of impurities and their transfer across the metal/slag interface, on the emulsification of the droplet into the slag medium. The samples were then examined through X-ray computer tomography (XCT) giving the mapping of emulsion dispersion in 3D space, calculating the changing of interfacial area between the two materials, and changes of material volume due to material transfer between metal and slag. Null experiments to rule out thermal gradients being the cause of emulsification have been conducted as well as replication of the previously reported study by Assis et al.[1] which has given insights into the mechanism of emulsification. Finally chemical analysis was conducted to discover the transfer of oxygen to be the cause of emulsification, leading to a new study of a system with undergoing oxygen equilibration

    Ultrasonography and color Doppler in juvenile idiopathic arthritis: diagnosis and follow-up of ultrasound-guided steroid injection in the ankle region. A descriptive interventional study

    Get PDF
    BACKGROUND: The ankle region is frequently involved in juvenile idiopathic arthritis (JIA) but difficult to examine clinically due to its anatomical complexity. The aim of the study was to evaluate the role of ultrasonography (US) of the ankle and midfoot (ankle region) in JIA. Doppler-US detected synovial hypertrophy, effusion and hyperemia and US was used for guidance of steroid injection and to assess treatment efficacy. METHODS: Forty swollen ankles regions were studied in 30 patients (median age 6.5 years, range 1-16 years) with JIA. All patients were assessed clinically, by US (synovial hypertrophy, effusion) and by color Doppler (synovial hyperemia) before and 4 weeks after US-guided steroid injection. RESULTS: US detected 121 compartments with active disease (joints, tendon sheaths and 1 ganglion cyst). Multiple compartments were involved in 80% of the ankle regions. The talo-crural joint, posterior subtalar joint, midfoot joints and tendon sheaths were affected in 78%, 65%, 30% and 55% respectively. Fifty active tendon sheaths were detected, and multiple tendons were involved in 12 of the ankles. US-guidance allowed accurate placement of the corticosteroid in all 85 injected compartments, with a low rate of subcutaneous atrophy (4,7%). Normalization or regression of synovial hypertrophy was obtained in 89%, and normalization of synovial hyperemia in 89%. Clinical resolution of active arthritis was noted in 72% of the ankles. CONCLUSIONS: US enabled exact anatomical location of synovial inflammation in the ankle region of JIA patients. The talo-crural joint was not always involved. Disease was frequently found in compartments difficult to evaluate clinically. US enabled exact guidance of steroid injections, gave a low rate of subcutaneous atrophy and was proved valuable for follow-up examinations. Normalization or regression of synovial hypertrophy and hyperemia was achieved in most cases, which supports the notion that US is an important tool in the management of ankle involvement in JIA

    Health-related quality-of-life measures for long-term follow-up in children after major trauma

    Get PDF
    Objective: Our objective was to review measures of health-related quality of life (HRQL) for long-term follow up in children after major trauma and to determine the measures that are suitable for a large age range, reliable and valid, and cover a substantial amount of the domains of functioning using the International Classification of Functioning, Disability, and Health (ICF) of the World Health Organization (WHO). Methods: The Medline and EMBASE databases were searched in all years up to October 2007 for generic HRQL measures suitable for children aged 5-18 years old and validated in English or Dutch. Measures were reviewed with respect to the age range for which the measure was suitable and reliability, validity, and content related to the ICF. Results: The search resulted in 1,235 hits and 21 related articles. Seventy-nine papers met the inclusion criteria, describing in total 14 measures: Child Health and Illness Profile Adolescent and Child Edition (CHIP-AE/CE), Child Health Questionnaire Child and Parent Forms (CHQCF87/PF50/PF28), DISABKIDS, Functional Status II (FS II)(R), Health Utilities Index Mark 2 (HUI 2), KIDSCREEN 52/27, KINDL, Pediatric Quality of Life Inventory (PedsQL), TNO Institute of Prevention and Health and the Leiden University Hospital (TNO-AZL), TNO-AZL Children’s Quality Of Life (TACQOL), and Youth Quality of Life Instrument-Research Version (YQOL-R). Measures that were suitable for a large age range were CHQ-PF50/PF28, DISABKIDS, FS II(R), HUI 2, KIDSCREEN, PedsQL, and TACQOL. All measures had moderate to good psychometric properties, except for CHQ-PF50/PF28, KINDL, and TACQOL, which had either low internal consistency or bad test-retest reliability. The measures that covered more than six chapters of the ICF domains were CHIP-AE/CE, CHQ-CF87/PF50, DISABKIDS, KIDSCREEN-52, PedsQL, and TACQOL. Conclusions: DISABKIDS, KIDSCREEN 52, and Peds-QL are suitable for long-term follow-up measurement of HRQL in children after major trauma. They cover a large age range, have good psychometric properties, and cover the ICF substantially

    On-orbit performance of the Gaia CCDs at L2

    Get PDF
    The European Space Agency's Gaia satellite was launched into orbit around L2 in December 2013 with a payload containing 106 large-format scientific CCDs. The primary goal of the mission is to repeatedly obtain high-precision astrometric and photometric measurements of one thousand million stars over the course of five years. The scientific value of the down-linked data, and the operation of the onboard autonomous detection chain, relies on the high performance of the detectors. As Gaia slowly rotates and scans the sky, the CCDs are continuously operated in a mode where the line clock rate and the satellite rotation spin-rate are in synchronisation. Nominal mission operations began in July 2014 and the first data release is being prepared for release at the end of Summer 2016. In this paper we present an overview of the focal plane, the detector system, and strategies for on-orbit performance monitoring of the system. This is followed by a presentation of the performance results based on analysis of data acquired during a two-year window beginning at payload switch-on. Results for parameters such as readout noise and electronic offset behaviour are presented and we pay particular attention to the effects of the L2 radiation environment on the devices. The radiation-induced degradation in the charge transfer efficiency (CTE) in the (parallel) scan direction is clearly diagnosed; however, an extrapolation shows that charge transfer inefficiency (CTI) effects at end of mission will be approximately an order of magnitude less than predicted pre-flight. It is shown that the CTI in the serial register (horizontal direction) is still dominated by the traps inherent to the manufacturing process and that the radiation-induced degradation so far is only a few per cent. Finally, we summarise some of the detector effects discovered on-orbit which are still being investigated.Comment: Published in A&A Gaia special featur

    Wolbachia Infections in Anopheles gambiae Cells: Transcriptomic Characterization of a Novel Host-Symbiont Interaction

    Get PDF
    The endosymbiotic bacterium Wolbachia is being investigated as a potential control agent in several important vector insect species. Recent studies have shown that Wolbachia can protect the insect host against a wide variety of pathogens, resulting in reduced transmission of parasites and viruses. It has been proposed that compromised vector competence of Wolbachia-infected insects is due to up-regulation of the host innate immune system or metabolic competition. Anopheles mosquitoes, which transmit human malaria parasites, have never been found to harbor Wolbachia in nature. While transient somatic infections can be established in Anopheles, no stable artificially-transinfected Anopheles line has been developed despite numerous attempts. However, cultured Anopheles cells can be stably infected with multiple Wolbachia strains such as wAlbB from Aedes albopictus, wRi from Drosophila simulans and wMelPop from Drosophila melanogaster. Infected cell lines provide an amenable system to investigate Wolbachia-Anopheles interactions in the absence of an infected mosquito strain. We used Affymetrix GeneChip microarrays to investigate the effect of wAlbB and wRi infection on the transcriptome of cultured Anopheles Sua5B cells, and for a subset of genes used quantitative PCR to validate results in somatically-infected Anopheles mosquitoes. Wolbachia infection had a dramatic strain-specific effect on gene expression in this cell line, with almost 700 genes in total regulated representing a diverse array of functional classes. Very strikingly, infection resulted in a significant down-regulation of many immune, stress and detoxification-related transcripts. This is in stark contrast to the induction of immune genes observed in other insect hosts. We also identified genes that may be potentially involved in Wolbachia-induced reproductive and pathogenic phenotypes. Somatically-infected mosquitoes had similar responses to cultured cells. The data show that Wolbachia has a profound and unique effect on Anopheles gene expression in cultured cells, and has important implications for mechanistic understanding of Wolbachia-induced phenotypes and potential novel strategies to control malaria
    corecore