184 research outputs found
Patients' online access to their electronic health records and linked online services: a systematic review in primary care
Background
Online access to medical records by patients can potentially enhance provision of patient-centred care and improve satisfaction. However, online access and services may also prove to be an additional burden for the healthcare provider.
Aim
To assess the impact of providing patients with access to their general practice electronic health records (EHR) and other EHR-linked online services on the provision, quality, and safety of health care.
Design and setting
A systematic review was conducted that focused on all studies about online record access and transactional services in primary care.
Method
Data sources included MEDLINE, Embase, CINAHL, Cochrane Library, EPOC, DARE, Kingâs Fund, Nuffield Health, PsycINFO, OpenGrey (1999â2012). The literature was independently screened against detailed inclusion and exclusion criteria; independent dual data extraction was conducted, the risk of bias (RoB) assessed, and a narrative synthesis of the evidence conducted.
Results
A total of 176 studies were identified, 17 of which were randomised controlled trials, cohort, or cluster studies. Patients reported improved satisfaction with online access and services compared with standard provision, improved self-care, and better communication and engagement with clinicians. Safety improvements were patient-led through identifying medication errors and facilitating more use of preventive services. Provision of online record access and services resulted in a moderate increase of e-mail, no change on telephone contact, but there were variable effects on face-to-face contact. However, other tasks were necessary to sustain these services, which impacted on clinician time. There were no reports of harm or breaches in privacy.
Conclusion
While the RoB scores suggest many of the studies were of low quality, patients using online services reported increased convenience and satisfaction. These services positively impacted on patient safety, although there were variations of record access and use by specific ethnic and socioeconomic groups. Professional concerns about privacy were unrealised and those about workload were only partly so
Antifungal Activity of Microbial Secondary Metabolites
Secondary metabolites are well known for their ability to impede other microorganisms. Reanalysis of a screen of natural products using the Caenorhabditis elegans-Candida albicans infection model identified twelve microbial secondary metabolites capable of conferring an increase in survival to infected nematodes. In this screen, the two compound treatments conferring the highest survival rates were members of the epipolythiodioxopiperazine (ETP) family of fungal secondary metabolites, acetylgliotoxin and a derivative of hyalodendrin. The abundance of fungal secondary metabolites indentified in this screen prompted further studies investigating the interaction between opportunistic pathogenic fungi and Aspergillus fumigatus, because of the ability of the fungus to produce a plethora of secondary metabolites, including the well studied ETP gliotoxin. We found that cell-free supernatant of A. fumigatus was able to inhibit the growth of Candida albicans through the production of a secreted product. Comparative studies between a wild-type and an A. fumigatus ÎgliP strain unable to synthesize gliotoxin demonstrate that this secondary metabolite is the major factor responsible for the inhibition. Although toxic to organisms, gliotoxin conferred an increase in survival to C. albicans-infected C. elegans in a dose dependent manner. As A. fumigatus produces gliotoxin in vivo, we propose that in addition to being a virulence factor, gliotoxin may also provide an advantage to A. fumigatus when infecting a host that harbors other opportunistic fungi
Patients' online access to their electronic health records and linked online services: a systematic interpretative review
Objectives: To investigate the effect of providing patients online access to their electronic health record (EHR) and linked transactional services on the provision, quality and safety of healthcare. The objectives are also to identify and understand: barriers and facilitators for providing online access to their records and services for primary care workers; and their association with organisational/IT system issues.
Setting: Primary care.
Participants: A total of 143 studies were included. 17 were experimental in design and subject to risk of bias assessment, which is reported in a separate paper. Detailed inclusion and exclusion criteria have also been published elsewhere in the protocol.
Primary and secondary outcome measures: Our primary outcome measure was change in quality or safety as a result of implementation or utilisation of online records/transactional services.
Results: No studies reported changes in health outcomes; though eight detected medication errors and seven reported improved uptake of preventative care. Professional concerns over privacy were reported in 14 studies. 18 studies reported concern over potential increased workload; with some showing an increase workload in email or online messaging; telephone contact remaining unchanged, and face-to face contact staying the same or falling. Owing to heterogeneity in reporting overall workload change was hard to predict. 10 studies reported how online access offered convenience, primarily for more advantaged patients, who were largely highly satisfied with the process when clinician responses were prompt.
Conclusions: Patient online access and services offer increased convenience and satisfaction. However, professionals were concerned about impact on workload and risk to privacy. Studies correcting medication errors may improve patient safety. There may need to be a redesign of the business process to engage health professionals in online access and of the EHR to make it friendlier and provide equity of access to a wider group of patients
Long-baseline neutrino oscillation physics potential of the DUNE experiment
The sensitivity of the Deep Underground Neutrino Experiment (DUNE) to neutrino oscillation is determined, based on a full simulation, reconstruction, and event selection of the far detector and a full simulation and parameterized analysis of the near detector. Detailed uncertainties due to the flux prediction, neutrino interaction model, and detector effects are included. DUNE will resolve the neutrino mass ordering to a precision of 5Ï, for all ÎCP values, after 2 years of running with the nominal detector design and beam configuration. It has the potential to observe charge-parity violation in the neutrino sector to a precision of 3Ï (5Ï) after an exposure of 5 (10) years, for 50% of all ÎCP values. It will also make precise measurements of other parameters governing long-baseline neutrino oscillation, and after an exposure of 15 years will achieve a similar sensitivity to sin22Ξ13 to current reactor experiments
First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform
The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber with an active volume of 7.2Ă 6.1Ă 7.0 m3. It is installed at the CERN Neutrino Platform in a specially-constructed beam that delivers charged pions, kaons, protons, muons and electrons with momenta in the range 0.3 GeV/c to 7 GeV/c. Beam line instrumentation provides accurate momentum measurements and particle identification. The ProtoDUNE-SP detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment, and it incorporates full-size components as designed for that module. This paper describes the beam line, the time projection chamber, the photon detectors, the cosmic-ray tagger, the signal processing and particle reconstruction. It presents the first results on ProtoDUNE-SP\u27s performance, including noise and gain measurements, dE/dx calibration for muons, protons, pions and electrons, drift electron lifetime measurements, and photon detector noise, signal sensitivity and time resolution measurements. The measured values meet or exceed the specifications for the DUNE far detector, in several cases by large margins. ProtoDUNE-SP\u27s successful operation starting in 2018 and its production of large samples of high-quality data demonstrate the effectiveness of the single-phase far detector design
Volume III. DUNE far detector technical coordination
open966siAcknowledgments
This document was prepared by the DUNE collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. The DUNE collaboration also acknowledges the international, national, and regional funding agencies supporting the institutions who have contributed to completing this Technical Design Report.The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay-these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- A nd dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module.openAbi B.; Acciarri R.; Acero M.A.; Adamov G.; Adams D.; Adinolfi M.; Ahmad Z.; Ahmed J.; Alion T.; Monsalve S.A.; Alt C.; Anderson J.; Andreopoulos C.; Andrews M.; Andrianala F.; Andringa S.; Ankowski A.; Antonova M.; Antusch S.; Aranda-Fernandez A.; Ariga A.; Arnold L.O.; Arroyave M.A.; Asaadi J.; Aurisano A.; Aushev V.; Autiero D.; Azfar F.; Back H.; Back J.J.; Backhouse C.; Baesso P.; Bagby L.; Bajou R.; Balasubramanian S.; Baldi P.; Bambah B.; Barao F.; Barenboim G.; Barker G.; Barkhouse W.; Barnes C.; Barr G.; Monarca J.B.; Barros N.; Barrow J.L.; Bashyal A.; Basque V.; Bay F.; Alba J.B.; Beacom J.F.; Bechetoille E.; Behera B.; Bellantoni L.; Bellettini G.; Bellini V.; Beltramello O.; Belver D.; Benekos N.; Neves F.B.; Berger J.; Berkman S.; Bernardini P.; Berner R.M.; Berns H.; Bertolucci S.; Betancourt M.; Bezawada Y.; Bhattacharjee M.; Bhuyan B.; Biagi S.; Bian J.; Biassoni M.; Biery K.; Bilki B.; Bishai M.; Bitadze A.; Blake A.; Siffert B.B.; Blaszczyk F.; Blazey G.; Blucher E.; Boissevain J.; Bolognesi S.; Bolton T.; Bonesini M.; Bongrand M.; Bonini F.; Booth A.; Booth C.; Bordoni S.; Borkum A.; Boschi T.; Bostan N.; Bour P.; Boyd S.; Boyden D.; Bracinik J.; Braga D.; Brailsford D.; Brandt A.; Bremer J.; Brew C.; Brianne E.; Brice S.J.; Brizzolari C.; Bromberg C.; Brooijmans G.; Brooke J.; Bross A.; Brunetti G.; Buchanan N.; Budd H.; Caiulo D.; Calafiura P.; Calcutt J.; Calin M.; Calvez S.; Calvo E.; Camilleri L.; Caminata A.; Campanelli M.; Caratelli D.; Carini G.; Carlus B.; Carniti P.; Terrazas I.C.; Carranza H.; Castillo A.; Castromonte C.; Cattadori C.; Cavalier F.; Cavanna F.; Centro S.; Cerati G.; Cervelli A.; Villanueva A.C.; Chalifour M.; Chang C.; Chardonnet E.; Chatterjee A.; Chattopadhyay S.; Chaves J.; Chen H.; Chen M.; Chen Y.; Cherdack D.; Chi C.; Childress S.; Chiriacescu A.; Cho K.; Choubey S.; Christensen A.; Christian D.; Christodoulou G.; Church E.; Clarke P.; Coan T.E.; Cocco A.G.; Coelho J.; Conley E.; Conrad J.; Convery M.; Corwin L.; Cotte P.; Cremaldi L.; Cremonesi L.; Crespo-Anadon J.I.; Cristaldo E.; Cross R.; Cuesta C.; Cui Y.; Cussans D.; Dabrowski M.; Motta H.D.; Peres L.D.S.; David Q.; Davies G.S.; Davini S.; Dawson J.; De K.; Almeida R.M.D.; Debbins P.; Bonis I.D.; Decowski M.; Gouvea A.D.; Holanda P.C.D.; Astiz I.L.D.I.; Deisting A.; Jong P.D.; Delbart A.; Delepine D.; Delgado M.; Dell'acqua A.; Lurgio P.D.; Neto J.R.D.M.; Demuth D.M.; Dennis S.; Densham C.; Deptuch G.; Roeck A.D.; Romeri V.D.; Vries J.D.; Dharmapalan R.; Dias M.; Diaz F.; Diaz J.; Domizio S.D.; Giulio L.D.; Ding P.; Noto L.D.; Distefano C.; Diurba R.; Diwan M.; Djurcic Z.; Dokania N.; Dolinski M.; Domine L.; Douglas D.; Drielsma F.; Duchesneau D.; Duffy K.; Dunne P.; Durkin T.; Duyang H.; Dvornikov O.; Dwyer D.; Dyshkant A.; Eads M.; Edmunds D.; Eisch J.; Emery S.; Ereditato A.; Escobar C.; Sanchez L.E.; Evans J.J.; Ewart E.; Ezeribe A.C.; Fahey K.; Falcone A.; Farnese C.; Farzan Y.; Felix J.; Fernandez-Martinez E.; Menendez P.F.; Ferraro F.; Fields L.; Filkins A.; Filthaut F.; Fitzpatrick R.S.; Flanagan W.; Fleming B.; Flight R.; Fowler J.; Fox W.; Franc J.; Francis K.; Franco D.; Freeman J.; Freestone J.; Fried J.; Friedland A.; Fuess S.; Furic I.; Furmanski A.P.; Gago A.; Gallagher H.; Gallego-Ros A.; Gallice N.; Galymov V.; Gamberini E.; Gamble T.; Gandhi R.; Gandrajula R.; Gao S.; Garcia-Gamez D.; Garcia-Peris M.A.; Gardiner S.; Gastler D.; Ge G.; Gelli B.; Gendotti A.; Gent S.; Ghorbani-Moghaddam Z.; Gibin D.; Gil-Botella I.; Girerd C.; Giri A.; Gnani D.; Gogota O.; Gold M.; Gollapinni S.; Gollwitzer K.; Gomes R.A.; Bermeo L.G.; Fajardo L.S.G.; Gonnella F.; Gonzalez-Cuevas J.; Goodman M.C.; Goodwin O.; Goswami S.; Gotti C.; Goudzovski E.; Grace C.; Graham M.; Gramellini E.; Gran R.; Granados E.; Grant A.; Grant C.; Gratieri D.; Green P.; Green S.; Greenler L.; Greenwood M.; Greer J.; Griffith C.; Groh M.; Grudzinski J.; Grzelak K.; Gu W.; Guarino V.; Guenette R.; Guglielmi A.; Guo B.; Guthikonda K.; Gutierrez R.; Guzowski P.; Guzzo M.M.; Gwon S.; Habig A.; Hackenburg A.; Hadavand H.; Haenni R.; Hahn A.; Haigh J.; Haiston J.; Hamernik T.; Hamilton P.; Han J.; Harder K.; Harris D.A.; Hartnell J.; Hasegawa T.; Hatcher R.; Hazen E.; Heavey A.; Heeger K.M.; Hennessy K.; Henry S.; Morquecho M.H.; Herner K.; Hertel L.; Hesam A.S.; Hewes J.; Pichardo A.H.; Hill T.; Hillier S.J.; Himmel A.; Hoff J.; Hohl C.; Holin A.; Hoppe E.; Horton-Smith G.A.; Hostert M.; Hourlier A.; Howard B.; Howell R.; Huang J.; Huang J.; Hugon J.; Iles G.; Iliescu A.M.; Illingworth R.; Ioannisian A.; Itay R.; Izmaylov A.; James E.; Jargowsky B.; Jediny F.; Jesus-Valls C.; Ji X.; Jiang L.; Jimenez S.; Jipa A.; Joglekar A.; Johnson C.; Johnson R.; Jones B.; Jones S.; Jung C.; Junk T.; Jwa Y.; Kabirnezhad M.; Kaboth A.; Kadenko I.; Kamiya F.; Karagiorgi G.; Karcher A.; Karolak M.; Karyotakis Y.; Kasai S.; Kasetti S.P.; Kashur L.; Kazaryan N.; Kearns E.; Keener P.; Kelly K.J.; Kemp E.; Ketchum W.; Kettell S.; Khabibullin M.; Khotjantsev A.; Khvedelidze A.; Kim D.; King B.; Kirby B.; Kirby M.; Klein J.; Koehler K.; Koerner L.W.; Kohn S.; Koller P.P.; Kordosky M.; Kosc T.; Kose U.; Kostelecky V.; Kothekar K.; Krennrich F.; Kreslo I.; Kudenko Y.; Kudryavtsev V.; Kulagin S.; Kumar J.; Kumar R.; Kuruppu C.; Kus V.; Kutter T.; Lambert A.; Lande K.; Lane C.E.; Lang K.; Langford T.; Lasorak P.; Last D.; Lastoria C.; Laundrie A.; Lawrence A.; Lazanu I.; Lazur R.; Le T.; Learned J.; Lebrun P.; Miotto G.L.; Lehnert R.; De Oliveira M.L.; Leitner M.; Leyton M.; Li L.; Li S.; Li S.; Li T.; Li Y.; Liao H.; Lin C.; Lin S.; Lister A.; Littlejohn B.R.; Liu J.; Lockwitz S.; Loew T.; Lokajicek M.; Lomidze I.; Long K.; Loo K.; Lorca D.; Lord T.; Losecco J.; Louis W.C.; Luk K.; Luo X.; Lurkin N.; Lux T.; Luzio V.P.; MacFarland D.; MacHado A.; MacHado P.; MacIas C.; MacIer J.; Maddalena A.; Madigan P.; Magill S.; Mahn K.; Maio A.; Maloney J.A.; Mandrioli G.; Maneira J.C.; Manenti L.; Manly S.; Mann A.; Manolopoulos K.; Plata M.M.; Marchionni A.; Marciano W.; Marfatia D.; Mariani C.; Maricic J.; Marinho F.; Marino A.D.; Marshak M.; Marshall C.; Marshall J.; Marteau J.; Martin-Albo J.; Martinez N.; Caicedo D.A.M.; Martynenko S.; Mason K.; Mastbaum A.; Masud M.; Matsuno S.; Matthews J.; Mauger C.; Mauri N.; Mavrokoridis K.; Mazza R.; Mazzacane A.; Mazzucato E.; McCluskey E.; McConkey N.; McFarland K.S.; McGrew C.; McNab A.; Mefodiev A.; Mehta P.; Melas P.; Mellinato M.; Mena O.; Menary S.; Mendez H.; Menegolli A.; Meng G.; Messier M.; Metcalf W.; Mewes M.; Meyer H.; Miao T.; Michna G.; Miedema T.; Migenda J.; Milincic R.; Miller W.; Mills J.; Milne C.; Mineev O.; Miranda O.G.; Miryala S.; Mishra C.; Mishra S.; Mislivec A.; Mladenov D.; Mocioiu I.; Moffat K.; Moggi N.; Mohanta R.; Mohayai T.A.; Mokhov N.; Molina J.A.; Bueno L.M.; Montanari A.; Montanari C.; Montanari D.; Zetina L.M.M.; Moon J.; Mooney M.; Moor A.; Moreno D.; Morgan B.; Morris C.; Mossey C.; Motuk E.; Moura C.A.; Mousseau J.; Mu W.; Mualem L.; Mueller J.; Muether M.; Mufson S.; Muheim F.; Muir A.; Mulhearn M.; Muramatsu H.; Murphy S.; Musser J.; Nachtman J.; Nagu S.; Nalbandyan M.; Nandakumar R.; Naples D.; Narita S.; Navas-Nicolas D.; Nayak N.; Nebot-Guinot M.; Necib L.; Negishi K.; Nelson J.K.; Nesbit J.; Nessi M.; Newbold D.; Newcomer M.; Newhart D.; Nichol R.; Niner E.; Nishimura K.; Norman A.; Northrop R.; Novella P.; Nowak J.A.; Oberling M.; Campo A.O.D.; Olivier A.; Onel Y.; Onishchuk Y.; Ott J.; Pagani L.; Pakvasa S.; Palamara O.; Palestini S.; Paley J.M.; Pallavicini M.; Palomares C.; Pantic E.; Paolone V.; Papadimitriou V.; Papaleo R.; Papanestis A.; Paramesvaran S.; Parke S.; Parsa Z.; Parvu M.; Pascoli S.; Pasqualini L.; Pasternak J.; Pater J.; Patrick C.; Patrizii L.; Patterson R.B.; Patton S.; Patzak T.; Paudel A.; Paulos B.; Paulucci L.; Pavlovic Z.; Pawloski G.; Payne D.; Pec V.; Peeters S.J.; Penichot Y.; Pennacchio E.; Penzo A.; Peres O.L.; Perry J.; Pershey D.; Pessina G.; Petrillo G.; Petta C.; Petti R.; Piastra F.; Pickering L.; Pietropaolo F.; Pillow J.; Plunkett R.; Poling R.; Pons X.; Poonthottathil N.; Pordes S.; Potekhin M.; Potenza R.; Potukuchi B.V.; Pozimski J.; Pozzato M.; Prakash S.; Prakash T.; Prince S.; Prior G.; Pugnere D.; Qi K.; Qian X.; Raaf J.; Raboanary R.; Radeka V.; Rademacker J.; Radics B.; Rafique A.; Raguzin E.; Rai M.; Rajaoalisoa M.; Rakhno I.; Rakotondramanana H.; Rakotondravohitra L.; Ramachers Y.; Rameika R.; Delgado M.R.; Ramson B.; Rappoldi A.; Raselli G.; Ratoff P.; Ravat S.; Razafinime H.; Real J.; Rebel B.; Redondo D.; Reggiani-Guzzo M.; Rehak T.; Reichenbacher J.; Reitzner S.D.; Renshaw A.; Rescia S.; Resnati F.; Reynolds A.; Riccobene G.; Rice L.C.; Rielage K.; Rigaut Y.; Rivera D.; Rochester L.; Roda M.; Rodrigues P.; Alonso M.R.; Rondon J.R.; Roeth A.; Rogers H.; Rosauro-Alcaraz S.; Rossella M.; Rout J.; Roy S.; Rubbia A.; Rubbia C.; Russell B.; Russell J.; Ruterbories D.; Saakyan R.; Sacerdoti S.; Safford T.; Sahu N.; Sala P.; Samios N.; Sanchez M.; Sanders D.A.; Sankey D.; Santana S.; Santos-Maldonado M.; Saoulidou N.; Sapienza P.; Sarasty C.; Sarcevic I.; Savage G.; Savinov V.; Scaramelli A.; Scarff A.; Scarpelli A.; Schaffer T.; Schellman H.; Schlabach P.; Schmitz D.; Scholberg K.; Schukraft A.; Segreto E.; Sensenig J.; Seong I.; Sergi A.; Sergiampietri F.; Sgalaberna D.; Shaevitz M.; Shafaq S.; Shamma M.; Sharma H.R.; Sharma R.; Shaw T.; Shepherd-Themistocleous C.; Shin S.; Shooltz D.; Shrock R.; Simard L.; Simos N.; Sinclair J.; Sinev G.; Singh J.; Singh V.; Sipos R.; Sippach F.; Sirri G.; Sitraka A.; Siyeon K.; Smargianaki D.; Smith A.; Smith A.; Smith E.; Smith P.; Smolik J.; Smy M.; Snopok P.; Nunes M.S.; Sobel H.; Soderberg M.; Salinas C.J.S.; Soldner-Rembold S.; Solomey N.; Solovov V.; Sondheim W.E.; Sorel M.; Soto-Oton J.; Sousa A.; Soustruznik K.; Spagliardi F.; Spanu M.; Spitz J.; Spooner N.J.; Spurgeon K.; Staley R.; Stancari M.; Stanco L.; Steiner H.; Stewart J.; Stillwell B.; Stock J.; Stocker F.; Stokes T.; Strait M.; Strauss T.; Striganov S.; Stuart A.; Summers D.; Surdo A.; Susic V.; Suter L.; Sutera C.; Svoboda R.; Szczerbinska B.; Szelc A.; Talaga R.; Tanaka H.; Oregui B.T.; Tapper A.; Tariq S.; Tatar E.; Tayloe R.; Teklu A.; Tenti M.; Terao K.; Ternes C.A.; Terranova F.; Testera G.; Thea A.; Thompson J.L.; Thorn C.; Timm S.; Tonazzo A.; Torti M.; Tortola M.; Tortorici F.; Totani D.; Toups M.; Touramanis C.; Trevor J.; Trzaska W.H.; Tsai Y.T.; Tsamalaidze Z.; Tsang K.; Tsverava N.; Tufanli S.; Tull C.; Tyley E.; Tzanov M.; Uchida M.A.; Urheim J.; Usher T.; Vagins M.; Vahle P.; Valdiviesso G.; Valencia E.; Vallari Z.; Valle J.W.; Vallecorsa S.; Berg R.V.; De Water R.G.V.; Forero D.V.; Varanini F.; Vargas D.; Varner G.; Vasel J.; Vasseur G.; Vaziri K.; Ventura S.; Verdugo A.; Vergani S.; Vermeulen M.A.; Verzocchi M.; De Souza H.V.; Vignoli C.; Vilela C.; Viren B.; Vrba T.; Wachala T.; Waldron A.V.; Wallbank M.; Wang H.; Wang J.; Wang Y.; Wang Y.; Warburton K.; Warner D.; Wascko M.; Waters D.; Watson A.; Weatherly P.; Weber A.; Weber M.; Wei H.; Weinstein A.; Wenman D.; Wetstein M.; While M.R.; White A.; Whitehead L.H.; Whittington D.; Wilking M.J.; Wilkinson C.; Williams Z.; Wilson F.; Wilson R.J.; Wolcott J.; Wongjirad T.; Wood K.; Wood L.; Worcester E.; Worcester M.; Wret C.; Wu W.; Wu W.; Xiao Y.; Yang G.; Yang T.; Yershov N.; Yonehara K.; Young T.; Yu B.; Yu J.; Zalesak J.; Zambelli L.; Zamorano B.; Zani A.; Zazueta L.; Zeller G.; Zennamo J.; Zeug K.; Zhang C.; Zhao M.; Zhivun E.; Zhu G.; Zimmerman E.D.; Zito M.; Zucchelli S.; Zuklin J.; Zutshi V.; Zwaska R.Abi B.; Acciarri R.; Acero M.A.; Adamov G.; Adams D.; Adinolfi M.; Ahmad Z.; Ahmed J.; Alion T.; Monsalve S.A.; Alt C.; Anderson J.; Andreopoulos C.; Andrews M.; Andrianala F.; Andringa S.; Ankowski A.; Antonova M.; Antusch S.; Aranda-Fernandez A.; Ariga A.; Arnold L.O.; Arroyave M.A.; Asaadi J.; Aurisano A.; Aushev V.; Autiero D.; Azfar F.; Back H.; Back J.J.; Backhouse C.; Baesso P.; Bagby L.; Bajou R.; Balasubramanian S.; Baldi P.; Bambah B.; Barao F.; Barenboim G.; Barker G.; Barkhouse W.; Barnes C.; Barr G.; Monarca J.B.; Barros N.; Barrow J.L.; Bashyal A.; Basque V.; Bay F.; Alba J.B.; Beacom J.F.; Bechetoille E.; Behera B.; Bellantoni L.; Bellettini G.; Bellini V.; Beltramello O.; Belver D.; Benekos N.; Neves F.B.; Berger J.; Berkman S.; Bernardini P.; Berner R.M.; Berns H.; Bertolucci S.; Betancourt M.; Bezawada Y.; Bhattacharjee M.; Bhuyan B.; Biagi S.; Bian J.; Biassoni M.; Biery K.; Bilki B.; Bishai M.; Bitadze A.; Blake A.; Siffert B.B.; Blaszczyk F.; Blazey G.; Blucher E.; Boissevain J.; Bolognesi S.; Bolton T.; Bonesini M.; Bongrand M.; Bonini F.; Booth A.; Booth C.; Bordoni S.; Borkum A.; Boschi T.; Bostan N.; Bour P.; Boyd S.; Boyden D.; Bracinik J.; Braga D.; Brailsford D.; Brandt A.; Bremer J.; Brew C.; Brianne E.; Brice S.J.; Brizzolari C.; Bromberg C.; Brooijmans G.; Brooke J.; Bross A.; Brunetti G.; Buchanan N.; Budd H.; Caiulo D.; Calafiura P.; Calcutt J.; Calin M.; Calvez S.; Calvo E.; Camilleri L.; Caminata A.; Campanelli M.; Caratelli D.; Carini G.; Carlus B.; Carniti P.; Terrazas I.C.; Carranza H.; Castillo A.; Castromonte C.; Cattadori C.; Cavalier F.; Cavanna F.; Centro S.; Cerati G.; Cervelli A.; Villanueva A.C.; Chalifour M.; Chang C.; Chardonnet E.; Chatterjee A.; Chattopadhyay S.; Chaves J.; Chen H.; Chen M.; Chen Y.; Cherdack D.; Chi C.; Childress S.; Chiriacescu A.; Cho K.; Choubey S.; Christensen A.; Christian D.; Christodoulou G.; Church E.; Clarke P.; Coan T.E.; Cocco A.G.; Coelho J.; Conley E.; Conrad J.; Convery M.; Corwin L.; Cotte P.; Cremaldi L.; Cremonesi L.; Crespo-Anadon J.I.; Cristaldo E.; Cross R.; Cuesta C.; Cui Y.; Cussans D.; Dabrowski M.; Motta H.D.; Peres L.D.S.; David Q.; Davies G.S.; Davini S.; Dawson J.; De K.; Almeida R.M.D.; Debbins P.; Bonis I.D.; Decowski M.; Gouvea A.D.; Holanda P.C.D.; Astiz I.L.D.I.; Deisting A.; Jong P.D.; Delbart A.; Delepine D.; Delgado M.; Dell'acqua A.; Lurgio P.D.; Neto J.R.D.M.; Demuth D.M.; Dennis S.; Densham C.; Deptuch G.; Roeck A.D.; Romeri V.D.; Vries J.D.; Dharmapalan R.; Dias M.; Diaz F.; Diaz J.; Domizio S.D.; Giulio L.D.; Ding P.; Noto L.D.; Distefano C.; Diurba R.; Diwan M.; Djurcic Z.; Dokania N.; Dolinski M.; Domine L.; Douglas D.; Drielsma F.; Duchesneau D.; Duffy K.; Dunne P.; Durkin T.; Duyang H.; Dvornikov O.; Dwyer D.; Dyshkant A.; Eads M.; Edmunds D.; Eisch J.; Emery S.; Ereditato A.; Escobar C.; Sanchez L.E.; Evans J.J.; Ewart E.; Ezeribe A.C.; Fahey K.; Falcone A.; Farnese C.; Farzan Y.; Felix J.; Fernandez-Martinez E.; Menendez P.F.; Ferraro F.; Fields L.; Filkins A.; Filthaut F.; Fitzpatrick R.S.; Flanagan W.; Fleming B.; Flight R.; Fowler J.; Fox W.; Franc J.; Francis K.; Franco D.; Freeman J.; Freestone J.; Fried J.; Friedland A.; Fuess S.; Furic I.; Furmanski A.P.; Gago A.; Gallagher H.; Gallego-Ros A.; Gallice N.; Galymov V.; Gamberini E.; Gamble T.; Gandhi R.; Gandrajula R.; Gao S.; Garcia-Gamez D.; Garcia-Peris M.A.; Gardiner S.; Gastler D.; Ge G.; Gelli B.; Gendotti A.; Gent S.; Ghorbani-Moghaddam Z.; Gibin D.; Gil-Botella I.; Girerd C.; Giri A.; Gnani D.; Gogota O.; Gold M.; Gollapinni S.; Gollwitzer K.; Gomes R.A.; Bermeo L.G.; Fajardo L.S.G.; Gonnella F.; Gonzalez-Cuevas J.; Goodman M.C.; Goodwin O.; Goswami S.; Gotti C.; Goudzovski E.; Grace C.; Graham M.; Gramellini E.; Gran R.; Granados E.; Grant A.; Grant C.; Gratieri D.; Green P.; Green S.; Greenler L.; Greenwood M.; Greer J.; Griffith C.; Groh M.; Grudzinski J.; Grzelak K.; Gu W.; Guarino V.; Guenette R.; Guglielmi A.; Guo B.; Guthikonda K.; Gutierrez R.; Guzowski P.; Guzzo M.M.; Gwon S.; Habig A.; Hackenburg A.; Hadavand H.; Haenni R.; Hahn A.; Haigh J.; Haiston J.; Hamernik T.; Hamilton P.; Han J.; Harder K.; Harris D.A.; Hartnell J.; Hasegawa T.; Hatcher R.; Hazen E.; Heavey A.; Heeger K.M.; Hennessy K.; Henry S.; Morquecho M.H.; Herner K.; Hertel L.; Hesam A.S.; Hewes J.; Pichardo A.H.; Hill T.; Hillier S.J.; Himmel A.; Hoff J.; Hohl C.; Holin A.; Hoppe E.; Horton-Smith G.A.; Hostert M.; Hourlier A.; Howard B.; Howell R.; Huang J.; Huang J.; Hugon J.; Iles G.; Iliescu A.M.; Illingworth R.; Ioannisian A.; Itay R.; Izmaylov A.; James E.; Jargowsky B.; Jediny F.; Jesus-Valls C.; Ji X.; Jiang L.; Jimenez S.; Jipa A.; Joglekar A.; Johnson C.; Johnson R.; Jones B.; Jones S.; Jung C.; Junk T.; Jwa Y.; Kabirnezhad M.; Kaboth A.; Kadenko I.; Kamiya F.; Karagiorgi G.; Karcher A.; Karolak M.; Karyotakis Y.; Kasai S.; Kasetti S.P.; Kashur L.; Kazaryan N.; Kearns E.; Keener P.; Kelly K.J.; Kemp E.; Ketchum W.; Kettell S.; Khabibullin M.; Khotjantsev A.; Khvedelidze A.; Kim D.; King B.; Kirby B.; Kirby M.; Klein J.; Koehler K.; Koerner L.W.; Kohn S.; Koller P.P.; Kordosky M.; Kosc T.; Kose U.; Kostelecky V.; Kothekar K.; Krennrich F.; Kreslo I.; Kudenko Y.; Kudryavtsev V.; Kulagin S.; Kumar J.; Kumar R.; Kuruppu C.; Kus V.; Kutter T.; Lambert A.; Lande K.; Lane C.E.; Lang K.; Langford T.; Lasorak P.; Last D.; Lastoria C.; Laundrie A.; Lawrence A.; Lazanu I.; Lazur R.; Le T.; Learned J.; Lebrun P.; Miotto G.L.; Lehnert R.; De Oliveira M.L.; Leitner M.; Leyton M.; Li L.; Li S.; Li S.; Li T.; Li Y.; Liao H.; Lin C.; Lin S.; Lister A.; Littlejohn B.R.; Liu J.; Lockwitz S.; Loew T.; Lokajicek M.; Lomidze I.; Long K.; Loo K.; Lorca D.; Lord T.; Losecco J.; Louis W.C.; Luk K.; Luo X.; Lurkin N.; Lux T.; Luzio V.P.; MacFarland D.; MacHado A.; MacHado P.; MacIas C.; MacIer J.; Maddalena A.; Madigan P.; Magill S.; Mahn K.; Maio A.; Maloney J.A.; Mandrioli G.; Maneira J.C.; Manenti L.; Manly S.; Mann A.; Manolopoulos K.; Plata M.M.; Marchionni A.; Marciano W.; Marfatia D.; Mariani C.; Maricic J.; Marinho F.; Marino A.D.; Marshak M.; Marshall C.; Marshall J.; Marteau J.; Martin-Albo J.; Martinez N.; Caicedo D.A.M.; Martynenko S.; Mason K.; Mastbaum A.; Masud M.; Matsuno S.; Matthews J.; Mauger C.; Mauri N.; Mavrokoridis K.; Mazza R.; Mazzacane A.; Mazzucato E.; McCluskey E.; McConkey N.; McFarland K.S.; McGrew C.; McNab A.; Mefodiev A.; Mehta P.; Melas P.; Mellinato M.; Mena O.; Menary S.; Mendez H.; Menegolli A.; Meng G.; Messier M.; Metcalf W.; Mewes M.; Meyer H.; Miao T.; Michna G.; Miedema T.; Migenda J.; Milincic R.; Miller W.; Mills J.; Milne C.; Mineev O.; Miranda O.G.; Miryala S.; Mishra C.; Mishra S.; Mislivec A.; Mladenov D.; Mocioiu I.; Moffat K.; Moggi N.; Mohanta R.; Mohayai T.A.; Mokhov N.; Molina J.A.; Bueno L.M.; Montanari A.; Montanari C.; Montanari D.; Zetina L.M.M.; Moon J.; Mooney M.; Moor A.; Moreno D.; Morgan B.; Morris C.; Mossey C.; Motuk E.; Moura C.A.; Mousseau J.; Mu W.; Mualem L.; Mueller J.; Muether M.; Mufson S.; Muheim F.; Muir A.; Mulhearn M.; Muramatsu H.; Murphy S.; Musser J.; Nachtman J.; Nagu S.; Nalbandyan M.; Nandakumar R.; Naples D.; Narita S.; Navas-Nicolas D.; Nayak N.; Nebot-Guinot M.; Necib L.; Negishi K.; Nelson J.K.; Nesbit J.; Nessi M.; Newbold D.; Newcomer M.; Newhart D.; Nichol R.; Niner E.; Nishimura K.; Norman A.; Northrop R.; Novella P.; Nowak J.A.; Oberling M.; Campo A.O.D.; Olivier A.; Onel Y.; Onishchuk Y.; Ott J.; Pagani L.; Pakvasa S.; Palamara O.; Palestini S.; Paley J.M.; Pallavicini M.; Palomares C.; Pantic E.; Paolone V.; Papadimitriou V.; Papaleo R.; Papanestis A.; Paramesvaran S.; Parke S.; Parsa Z.; Parvu M.; Pascoli S.; Pasqualini L.; Pasternak J.; Pater J.; Patrick C.; Patrizii L.; Patterson R.B.; Patton S.; Patzak T.; Paudel A.; Paulos B.; Paulucci L.; Pavlovic Z.; Pawloski G.; Payne D.; Pec V.; Peeters S.J.; Penichot Y.; Pennacchio E.; Penzo A.; Peres O.L.; Perry J.; Pershey D.; Pessina G.; Petrillo G.; Petta C.; Petti R.; Piastra F.; Pickering
Long-baseline neutrino oscillation physics potential of the DUNE experiment
The sensitivity of the Deep Underground Neutrino Experiment (DUNE) to neutrino oscillation is determined, based on a full simulation, reconstruction, and event selection of the far detector and a full simulation and parameterized analysis of the near detector. Detailed uncertainties due to the flux prediction, neutrino interaction model, and detector effects are included. DUNE will resolve the neutrino mass ordering to a precision of 5Ï, for all ÎŽ_(CP) values, after 2 years of running with the nominal detector design and beam configuration. It has the potential to observe charge-parity violation in the neutrino sector to a precision of 3Ï (5Ï) after an exposure of 5 (10) years, for 50% of all ÎŽ_(CP) values. It will also make precise measurements of other parameters governing long-baseline neutrino oscillation, and after an exposure of 15 years will achieve a similar sensitivity to sinÂČΞââ to current reactor experiments
Volume I. Introduction to DUNE
The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decayâthese mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE\u27s physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology
Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment
The Deep Underground Neutrino Experiment (DUNE) will produce world-leading
neutrino oscillation measurements over the lifetime of the experiment. In this
work, we explore DUNE's sensitivity to observe charge-parity violation (CPV) in
the neutrino sector, and to resolve the mass ordering, for exposures of up to
100 kiloton-megawatt-years (kt-MW-yr). The analysis includes detailed
uncertainties on the flux prediction, the neutrino interaction model, and
detector effects. We demonstrate that DUNE will be able to unambiguously
resolve the neutrino mass ordering at a 3 (5) level, with a 66
(100) kt-MW-yr far detector exposure, and has the ability to make strong
statements at significantly shorter exposures depending on the true value of
other oscillation parameters. We also show that DUNE has the potential to make
a robust measurement of CPV at a 3 level with a 100 kt-MW-yr exposure
for the maximally CP-violating values \delta_{\rm CP}} = \pm\pi/2.
Additionally, the dependence of DUNE's sensitivity on the exposure taken in
neutrino-enhanced and antineutrino-enhanced running is discussed. An equal
fraction of exposure taken in each beam mode is found to be close to optimal
when considered over the entire space of interest
- âŠ