49 research outputs found

    Stability of trapped Bose-Einstein condensates

    Full text link
    In three-dimensional trapped Bose-Einstein condensate (BEC), described by the time-dependent Gross-Pitaevskii-Ginzburg equation, we study the effect of initial conditions on stability using a Gaussian variational approach and exact numerical simulations. We also discuss the validity of the criterion for stability suggested by Vakhitov and Kolokolov. The maximum initial chirp (initial focusing defocusing of cloud) that can lead a stable condensate to collapse even before the number of atoms reaches its critical limit is obtained for several specific cases. When we consider two- and three-body nonlinear terms, with negative cubic and positive quintic terms, we have the conditions for the existence of two phases in the condensate. In this case, the magnitude of the oscillations between the two phases are studied considering sufficient large initial chirps. The occurrence of collapse in a BEC with repulsive two-body interaction is also shown to be possible.Comment: 15 pages, 11 figure

    Vortex phase diagram in trapped Bose-Einstein condensation

    Full text link
    The vortex phase diagram in the external rotation frequency versus temperature is calculated for dilute Bose-Einstein condensed gases. It is determined within the Bogoliubov-Popov theory for a finite temperature where the condensate and non-condensate fractions are treated in an equal footing. The temperature dependences of various thermodynamic instability lines for the vortex nucleation are computed to construct the phase diagram. Experiments are proposed to resolve a recent controversy on the vortex creation problem associated with the quantized vortex observation in 87^{87}Rb atom gases.Comment: 11 pages, 8 figure

    Simulating Dirac fermions with Abelian and non-Abelian gauge fields in optical lattices

    Get PDF
    In this work we present an optical lattice setup to realize a full Dirac Hamiltonian in 2+1 dimensions. We show how all possible external potentials coupled to the Dirac field can arise from perturbations of the existing couplings of the honeycomb lattice model, without the need of additional laser fields. This greatly simplifies the proposed implementations, requiring only spatial modulations of the intensity of the laser beams. We finally suggest several experiments to observe the properties of the Dirac field in the setup

    Stable vortex and dipole vector solitons in a saturable nonlinear medium

    Full text link
    We study both analytically and numerically the existence, uniqueness, and stability of vortex and dipole vector solitons in a saturable nonlinear medium in (2+1) dimensions. We construct perturbation series expansions for the vortex and dipole vector solitons near the bifurcation point where the vortex and dipole components are small. We show that both solutions uniquely bifurcate from the same bifurcation point. We also prove that both vortex and dipole vector solitons are linearly stable in the neighborhood of the bifurcation point. Far from the bifurcation point, the family of vortex solitons becomes linearly unstable via oscillatory instabilities, while the family of dipole solitons remains stable in the entire domain of existence. In addition, we show that an unstable vortex soliton breaks up either into a rotating dipole soliton or into two rotating fundamental solitons.Comment: To appear in Phys. Rev.

    Mixtures of Bosonic and Fermionic Atoms in Optical Lattices

    Full text link
    We discuss the theory of mixtures of Bosonic and Fermionic atoms in periodic potentials at zero temperature. We derive a general Bose--Fermi Hubbard Hamiltonian in a one--dimensional optical lattice with a superimposed harmonic trapping potential. We study the conditions for linear stability of the mixture and derive a mean field criterion for the onset of a Bosonic superfluid transition. We investigate the ground state properties of the mixture in the Gutzwiller formulation of mean field theory, and present numerical studies of finite systems. The Bosonic and Fermionic density distributions and the onset of quantum phase transitions to demixing and to a Bosonic Mott--insulator are studied as a function of the lattice potential strength. The existence is predicted of a disordered phase for mixtures loaded in very deep lattices. Such a disordered phase possessing many degenerate or quasi--degenerate ground states is related to a breaking of the mirror symmetry in the lattice.Comment: 11 pages, 8 figures; added discussions; conclusions and references expande

    Resonant Generation of Topological Modes in Trapped Bose Gases

    Full text link
    Trapped Bose atoms cooled down to temperatures below the Bose-Einstein condensation temperature are considered. Stationary solutions to the Gross-Pitaevskii equation (GPE) define the topological coherent modes, representing nonground-state Bose-Einstein condensates. These modes can be generated by means of alternating fields whose frequencies are in resonance with the transition frequencies between two collective energy levels corresponding to two different topological modes. The theory of resonant generation of these modes is generalized in several aspects: Multiple-mode formation is described; a shape-conservation criterion is derived, imposing restrictions on the admissible spatial dependence of resonant fields; evolution equations for the case of three coherent modes are investigated; the complete stability analysis is accomplished; the effects of harmonic generation and parametric conversion for the topological coherent modes are predicted. All considerations are realized both by employing approximate analytical methods as well as by numerically solving the GPE. Numerical solutions confirm all conclusions following from analytical methods.Comment: One reference modifie

    Block Spin Density Matrix of the Inhomogeneous AKLT Model

    Full text link
    We study the inhomogeneous generalization of a 1-dimensional AKLT spin chain model. Spins at each lattice site could be different. Under certain conditions, the ground state of this AKLT model is unique and is described by the Valence-Bond-Solid (VBS) state. We calculate the density matrix of a contiguous block of bulk spins in this ground state. The density matrix is independent of spins outside the block. It is diagonalized and shown to be a projector onto a subspace. We prove that for large block the density matrix behaves as the identity in the subspace. The von Neumann entropy coincides with Renyi entropy and is equal to the saturated value.Comment: 20 page

    Stability and collapse of localized solutions of the controlled three-dimensional Gross-Pitaevskii equation

    Full text link
    On the basis of recent investigations, a newly developed analytical procedure is used for constructing a wide class of localized solutions of the controlled three-dimensional (3D) Gross-Pitaevskii equation (GPE) that governs the dynamics of Bose-Einstein condensates (BECs). The controlled 3D GPE is decomposed into a two-dimensional (2D) linear Schr\"{o}dinger equation and a one-dimensional (1D) nonlinear Schr\"{o}dinger equation, constrained by a variational condition for the controlling potential. Then, the above class of localized solutions are constructed as the product of the solutions of the transverse and longitudinal equations. On the basis of these exact 3D analytical solutions, a stability analysis is carried out, focusing our attention on the physical conditions for having collapsing or non-collapsing solutions.Comment: 21 pages, 14 figure

    Entanglement and Density Matrix of a Block of Spins in AKLT Model

    Full text link
    We study a 1-dimensional AKLT spin chain, consisting of spins SS in the bulk and S/2S/2 at both ends. The unique ground state of this AKLT model is described by the Valence-Bond-Solid (VBS) state. We investigate the density matrix of a contiguous block of bulk spins in this ground state. It is shown that the density matrix is a projector onto a subspace of dimension (S+1)2(S+1)^{2}. This subspace is described by non-zero eigenvalues and corresponding eigenvectors of the density matrix. We prove that for large block the von Neumann entropy coincides with Renyi entropy and is equal to ln(S+1)2\ln(S+1)^{2}.Comment: Revised version, typos corrected, references added, 31 page
    corecore