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The Chern number ν, as a topological invariant that identifies the winding of the ground state in the particle-hole
space, is a definitive theoretical signature that determines whether a given superconducting system can support
Majorana zero modes. Here we show that such a winding can be faithfully identified for any superconducting
system (p wave or s wave with spin-orbit coupling) through a set of time-of-flight measurements, making
it a diagnostic tool also in actual cold-atom experiments. As an application, we customize the measurement
scheme for a chiral topological model of spinless fermions. The proposed model only requires the experimentally
accessible s-wave pairing and staggered tunneling that mimics spin-orbit coupling. By adiabatically connecting
this model to Kitaev’s honeycomb lattice model, we show that it gives rise to ν = ±1 phases, where vortices
bind Majorana fermions, and ν = ±2 phases that emerge as the unique collective state of such vortices. Hence,
the preparation of these phases and the detection of their Chern numbers provide an unambiguous signature for
the presence of Majorana modes. Finally, we demonstrate that our detection procedure is resilient against most
inaccuracies in experimental control parameters as well as finite temperature.

DOI: 10.1103/PhysRevA.88.013622 PACS number(s): 03.75.Ss, 03.65.Vf, 67.85.−d

I. INTRODUCTION

Since the first theoretical proposal for realizing Majorana
modes, zero-energy quasiparticles that are their own antipar-
ticles, in solid-state systems [1], there has been sustained
research into a variety systems that might support them. This
effort is partially motivated by the prospect of topological
quantum computation [2]. The general conditions for a
fermionic system to support localized Majorana zero modes
are understood: the spectrum should possess particle-hole
symmetry, and the ground state should exhibit suitable topo-
logically nontrivial behavior. Particle-hole symmetry implies
that for a stationary state �

†
E with energy E, there exists

another state �−E with energy −E. The suitable topological
character of the ground state necessitates the presence of chiral
edge states [3], which in turn imply that zero-energy modes
can be localized at the core of vortices [4]. Due to particle-hole
symmetry these E = 0 modes satisfy the Majorana criterion
�

†
0 = �0.
Particle-hole symmetry is an intrinsic property of super-

conducting fermionic systems. They can also exhibit the
topological nontriviality required for Majorana modes when
either the pairing is of p-wave type [5] or the fermions
in a more conventional s-wave superconductor are strongly
spin-orbit coupled [6]. While recent experiments in solid-state
systems of the latter type have yielded evidence supporting the
existence of Majorana modes [7–9], loopholes remain [10–13],
and thus it is desirable to find other systems where Majorana
modes could be unambiguously prepared and detected. An
attractive platform are cold atoms trapped in optical lattices,
where various directions have been taken: p-wave pairing
could be induced either directly [14,15] (although hard experi-
mentally [16,17]) or dissipatively [18], the required spin-orbit
interaction could be synthesized using several atomic states

[19–21], or analog one-dimensional superconducting wires
could be directly realized [22]. Here we take another approach,
namely, that of staggered spinless fermions. These can be
realized with a single atomic species only, with the staggering
giving rise to an effective pseudospin-orbit coupling. Thus
when s-wave pairing is induced, one expects to find Majorana
mode supporting phases. We will prove this by explicitly
mapping our model to Kitaev’s celebrated honeycomb model
[23], which in turn is adiabatically equivalent to the p-wave
superconductor [24].

The ultimate goal is the experimental detection of Majorana
modes. Like in recent solid-state experiments [7–9], this has
been proposed to be carried out also in optical lattices by prob-
ing local densities [19,20,22]. However, as the characteristic
signals may arise also in nontopological phases [10], it would
be desirable to independently verify that the system is indeed
in the correct topological phase. Theoretically, noninteracting
topological phases can be characterized by a topological
number, such as the Chern number ν ∈ Z. Detecting this
topological invariant would fully characterize the state of
the system, with odd ν superconducting states supporting
localized Majorana modes. Unfortunately, except for cases
such as the off-diagonal conductivity in the quantum Hall
effect [25], it is, in general, not directly related to measurable
quantities.

Here we provide such a connection by showing how to re-
produce the Chern number of a general superfluid of fermionic
atoms from time-of-flight images [26,27]. Applying it to our
model, we can robustly detect phases, in the presence of both
finite temperature and experimental imperfections, with Chern
numbers ν = 0, ±1, and ±2. Due to the adiabatic connection
to Kitaev’s honeycomb model, we can immediately understand
the nature of these phases. The ν = ±1 phases correspond to a
regime where isolated vortices can bind interacting Majorana
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modes [28]. The ν = ±2 phases, on the other hand, have been
shown to emerge as a unique collective state of such Majorana
modes bound to an underlying vortex lattice [29]. While our
detection scheme is applicable also to other experimental
proposals, the detection of the ν = ±2 phases of our model
would thus constitute an unambiguous global signature that
Majorana modes do exist: these phases emerge if and only
if the model supports localized Majorana modes. Finally, we
show that both the simulation of the superconducting model
and the required time-of-flight measurements can be robustly
implemented in state-of-the-art ultracold-atom experiments
[30–32].

This paper is organized as follows. In Sec. II we show
how the Chern number for a superconducting system can
be reproduced as a winding number of a vector whose
components are obtained from physical observables. This
construction is then generalized to staggered systems where
we show the Chern number to be reproduced as the sum of
physically observable winding numbers for each sublattice.
In Sec. III we introduce a model of staggered spinless
fermions and show that its rich phase diagram can be faithfully
reproduced from the physically observable winding numbers.
An analytic solution to the staggered model and its adiabatic
connection to Kitaev’s honeycomb lattice model are given
in Appendices A and B, respectively. Finally, in Sec. IV we
discuss the general implementation of the staggered model
in optical lattices and outline a protocol for the experimental
detection of the winding numbers. A quantitative analysis of
the optical lattice implementation is left to Appendix C.

II. CHERN NUMBER AS AN OBSERVABLE
IN TOPOLOGICAL SUPERCONDUCTORS

In this section we first explain how the Chern number
of a translationally invariant topological superconductor can
be computed as a physically observable winding number.
Then we show that the winding number can be generalized
to multicomponent systems that arise in the presence of
pseudospin degrees of freedom, such as real spin, multiple
orbitals or sublattices due to staggering, or several distinct
species of atoms. We analytically demonstrate that the Chern
number is reproduced as the sum of winding numbers for
each pseudospin component. This decomposition is general
and fails only when the pseudospin degrees of freedom are
maximally entangled.

In addition to the detection of the full Chern number, we will
also show that its parity can be obtained from experimentally
accessible density measurements. While not providing full
characterization, this provides a simple method to distinguish
between phases which can and cannot support Majorana
modes.

A. The Chern number as a winding number in a spinless system

Formally, the Chern number ν can be defined as the winding
number of the projector onto the ground state [25]. When
the Bogoliubov–de Gennes Hamiltonian is a 2 × 2 matrix,
i.e., the system is fully translationally invariant, it can always
be written as H (p) ∝ S(p) · σ for some vector field S(p). Here
σ denotes a vector of Pauli matrices. The Chern number ν is

then equivalent to the winding number,

ν̃[S] = 1

4π

∫
BZ

s(p) ·
(

∂s(p)

∂px

× ∂s(p)

∂py

)
d2p ∈ Z, (1)

which counts how many times the normalized vector s = S/|S|
winds around the Bloch sphere in the particle-hole space as
one spans the whole Brillouin zone [25]. We can evaluate this
quantity if we know the components of the vector field S(p).
These components are observables that can be obtained as the
ground-state expectation values,

S(p) = 〈�|�p|�〉, �p = ψ†
pσψp, (2)

with the physical observables �p being given in the basis
ψ†

p = (a†
p,a−p) of the BdG Hamiltonian H (p):

�x
p = a†

pa
†
−p + a−pap,

�y
p = −ia†

pa
†
−p + ia−pap, (3)

�z
p = a†

pap − a−pa
†
−p.

This set of observables is a basis for the single-pseudospin
Hamiltonian and constitutes a natural extension of the op-
erators which construct the winding number in the case of
topological insulators [27].

While Sz is experimentally readily obtained from density
measurements �z

p, the experimental measurement of the
operators �x

p and �
y
p is challenging since they violate a

superselection rule: the number of particles. However, one
can, in general, go around this by mapping them to an
experimentally accessible operator �z

p with suitable rotations
on the state. This can typically be achieved by using operators
present in the Hamiltonian (such as �

x,y
p themselves). We will

later illustrate with a particular example how this could be
performed in an optical lattice experiment.

B. Winding numbers for the multicomponent case

To generalize the construction of the Chern number
as a physically observable winding number to a system
with an m-site unit cell (or, more generally, m degrees of
freedom giving 2m-dimensional Hilbert space per unit cell),
we define an independent vector field S(i)(p) = 〈�|�(i),p|�〉
for each of the sublattices, i = 1, . . . ,m. The corresponding
sublattice observables �(i),p = ψ

†
(i),pσψ (i),p are explicitly

given by

�x
(i),p = a

†
(i),pa

†
(i),−p + a(i),−pa(i),p,

�
y

(i),p = −ia
†
(i),pa

†
(i),−p + ia(i),−pa(i),p, (4)

�z
(i),p = a

†
(i),pa(i),p − a(i),−pa

†
(i),−p.

We now show how to construct, out of these observables,
a quantity that (i) is an integer, (ii) is defined in terms
of measurable quantities, and (iii) reproduces the Chern
number in the zero-temperature limit. Substituting each set
of sublattice observables into (1), we can construct m winding
numbers ν̃(i) = ν̃[S(i)], i = 1, . . . ,m, with the total winding
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number being defined as their sum:

ν̃ =
m∑

i=1

ν̃(i). (5)

By construction, this quantity satisfies properties (i) and (ii) as
listed above. To satisfy (iii) we present the following argument
for reproducing the Chern number in terms of sublattice
winding numbers. A more formal and general proof will be
presented in a follow-up work [33].

1. Proof for Chern number decomposition in terms
of sublattice winding numbers

The ground state of our model can, in general, be Schmidt
decomposed as

|�(p)〉 = cos[θ (p)]|φ+
w (p)〉|φ+

b (p)〉
+ sin[θ (p)]|φ−

w (p)〉|φ−
b (p)〉, (6)

where cos[θ (p)] � 0 and sin[θ (p)] � 0 are the positive
weights (θ ∈ [0,π/2]) of the Schmidt decomposition and the
orthonormal and momentum-dependent states {|φ+

b 〉,|φ−
b 〉}

({|φ+
w 〉,|φ−

w 〉}) live only on the black (white) sublattice.
When the states |φ+

(i)〉 are viewed as ground states of a
two-dimensional Hamiltonian H(i) = (1 + |φ+

(i)〉〈φ+
(i)|)/2, we

associate a vector S(i) with them through H(i) ∝ S(i) · σ . It is
then straightforward to verify that

Sα
(i) = 〈�|�α

(i),p|�〉 = T 〈φ+
(i)|�α

(i),p|φ+
(i)〉 = T sα

(i), (7)

where we defined T = cos2 θ − sin2 θ . The orthonormality of
the states |φ±

(i)〉 gives

|S(i)| = |T | = | cos2 θ − sin2 θ |, (8)

which means that the norms of vectors S(i) are equal and
provide a physically observable measure of the entanglement
between the sublattices. For θ = 0 or π/2 they are unentan-
gled, while for θ = π/4 they are maximally entangled. In
the latter case |S(i)| vanishes, and the decomposition can no
longer be described in terms of physically observable vectors
S(i) associated with each sublattice. Assuming this is not the
case, i.e., θ �= π/4 for all momenta, we can associate a winding
number (1) to each vector in the same way as in the spinless
case.

The Chern number can be decomposed into a sum of these
winding numbers as follows. It can be formally given as the
Berry phase of the ground state along the edge of the Brillouin
zone,

ν = 1

2πi

∮
∂BZ

〈�|∇|�〉 · dp. (9)

Substituting the Schmidt decomposed ground state (6) into this
expression and using the normalization of the state, we obtain

ν =
∑

i

1

2πi

∮
∂BZ

T 〈φ+
(i)|∇|φ+

(i)〉 · dp. (10)

Without loss of generality we assume that T > 0 for all
momenta. Then we find, up to a vanishing additive integral,
that ∮

T 〈φ|∇|φ〉 · dp =
∮

(〈φ|
√

T )∇(
√

T |φ〉) · dp.

As
√

T plays only the role of a scaling of the normalized Bloch
vector |φ〉, the winding number on the right-hand side remains
invariant if we take T → 1. We can thus define sublattice
“Chern numbers” as ν̃(i) = 1

2πi

∮
∂BZ

〈φ+
(i)|∇|φ+

(i)〉 · dp in terms
of which Chern number of the ground state is additive.
Realizing that each ν̃(i) can be evaluated as the winding
number (1) of the corresponding normalized vectors s(i), we
arrive at the conclusion (5) that the Chern number of the full
ground state can be obtained as the sum of winding numbers
associated with physical observables on each sublattice.

For this decomposition to make sense, we assumed that
the vectors S(i) can be robustly determined, i.e., that they
have a finite norm. This requirement thus provides a physical
constraint for the detection of the Chern number: The Chern
number is reproduced as the sum of the sublattice winding
numbers only when the sublattices are not maximally entan-
gled. As the entanglement given by the norm |S(i)| is also a
physical observable, it can be used in the experiments as a
measure of reliability of the characterization provided by the
winding number (5). We will numerically verify in the next
section that the decomposition indeed fails only in the maximal
entanglement limit.

C. Chern number parity from density measurements

While the Chern number can be obtained by using the
full set of observables (4), for practical purposes a coarser
classification of the phases can be sufficient. For instance, to
distinguish between phases that support localized Majorana
modes (odd ν) from those that do not (even ν), it is sufficient
to know only the parity of the Chern number. Or to classify all
the topological phases up to their chiralities, the knowledge of
|ν| is sufficient. Remarkably, both can be obtained from �z

(i)
measurements that are directly experimentally accessible.

Let us consider first the properties of the spinless case.
Due to the presence of both translational and particle-hole
symmetries the surface S(p) always has the topology of a torus,
and it is always symmetric around the z axis. This means that
by just counting the extremal and saddle points of the Sz(p), we
can infer whether the surface S(p) encloses the origin or not.
The key observation is that ν̃ �= 0 is possible only if it does. The
parity of the winding number |ν|(mod 2) can thus be obtained
using the following simple protocol: (i) Find the null-gradient
points (local maxima and minima and saddle points) of the Sz

distribution in the Brillouin zone, and (ii) assign |ν̃| = 0 (1) if
the number of such points with Sz > 0 is even (odd). Phases
with |ν| = 0 (1) will correspond to phases with even (odd)
Chern numbers.

In a system with m components one has m winding
numbers ν̃(i)[S(i)], whose parities can be independently ob-
tained using the same protocol as above. This allows for a
richer characterization of the phases beyond just the Chern
number parity. In fact, when we apply in the next section
the parity measurements to a particular example, we find that
the absolute value of the Chern number can be consistently
obtained as the sum of the sublattice winding parities, i.e., that
|ν| = ∑

i |ν̃(i)|. We postulate that this is a general property,
which allows for the full characterization of different types of
topological phases in multicomponent systems based on the
experimentally accessible density measurements only.
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III. CASE STUDY: STAGGERED SPINLESS
FERMIONS WITH s-WAVE PAIRING

In this section we demonstrate our detection scheme for the
Chern number in the context of a particular model. First, we
introduce a model of staggered spinless fermions whose phase
diagram contains topological phase characterized by Chern
numbers ν = 0,±1, and ±2. We briefly discuss its adiabatic
connection to Kitaev’s honeycomb model (details are given in
Appendix B) and the way this connection allows the model to
exhibit collective signatures of Majorana modes. In the second
part we demonstrate that the phase diagram of the model can
be robustly captured using the detection methods described
in Sec. II.

A. The model

Our model is defined for spinless fermions on a square
lattice and combines staggered complex hopping with a
uniform superconducting s-wave interaction. The Hamiltonian
is

H =
∑

j

[μja
†
j aj + it(−1)jx a

†
j aj+x̂ + ta

†
j aj+ŷ

+
(a†
j a

†
j+x̂ + a

†
j a

†
j+ŷ)] + H.c., (11)

where a
†
j creates a fermion at site j = (jx,jy), the tunneling

amplitude t and the pairing potential 
 are both real, and
the chemical potential μj = μ + (−1)jx δ is staggered by the
detuning δ. Translational symmetry is broken along the x

direction, with the “magnetic” unit cell consisting of two
adjacent sites with detuned chemical potentials, as shown
in Fig. 1. Inspired by the Kogut-Susskind fermions [34,35],
we interpret this lattice degree of freedom as a “pseudospin”
τ ∈ {b,w} of the fermions a

†
τ,j. Hamiltonian (11) can thus

be viewed as an effective pseudospin-orbit coupled system:
Tunneling along the x(y) direction changes (conserves) the

10 0.50.2
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FIG. 1. (Color online) (left) Staggered topological superconduc-
tor with s-wave pairing on a square lattice (11). The numbers denote
the relative phases of the tunneling amplitudes, while the black (white)
sites experience a chemical potential μb = μ + δ (μw = μ − δ).
Circles and squares denote the underlying distinct, but fixed, internal
atomic states that facilitate the optical lattice implementation. The
dashed box denotes the two-site “magnetic” unit cell. (right) When
Kitaev’s honeycomb model with π -flux vortex per plaquette is written
in the basis of complex fermions, the vertical links become the
sites of a square lattice, with the fermions subject to a staggered
chemical potential. As detailed in Appendix B, a linear interpo-
lation xH + (x − 1)HHC for x ∈ [0,1] shows that our model (11)
can be adiabatically connected to the honeycomb model with
Hamiltonian HHC.
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FIG. 2. (Color online) (left) The phase diagram of (11) as a
function of the overall chemical potential μ and its detuning δ. Color
(gray shading) encodes the magnitude of the fermionic spectral gap,
and the dashed lines show the phase boundaries at which the gap
closes. The Chern number ν for each phase is also shown. The phase
diagram is symmetric with respect to μ → −μ, while for δ → −δ

all the Chern numbers become time reversed (ν → −ν). The regions
μ � δ/2 (μ � δ/2) can be identified with the honeycomb model in
the presence (absence) of a vortex lattice (see Appendix B). (right)
The total winding number ν̃, (5) [encoded in color (gray shading)], as
obtained from the observables (4). It shows perfect agreement with
the Chern number except in regions where sublattices are close to
being maximally entangled (see Fig. 3). Both plots are for 
/t = 2.

pseudospin state, which effectively realizes an anisotropic
Rashba-type spin-orbit coupling, while the chemical potential
detuning plays the role of a Zeeman term. Thus, by adding
s-wave pairing, one expects to find Majorana-mode-supporting
topological phases [36].

To verify this, we solve (11) by Fourier transforming it with
respect to the magnetic unit cell. Writing it subsequently in the
particle-hole basis ψ†

p = (a†
b,p,a

†
w,p,ab,−p,aw,−p), we obtain

the quadratic Hamiltonian H = ∫
BZ

ψ†
pH (p)ψpd

2p, where
the Brillouin zone (BZ) spans px ∈ [0,π ] and py ∈ [0,2π ],
and the Bloch Hamiltonian H (p) is a 4 × 4 matrix. From
the analytic solution presented in Appendix A, we obtain the
phase diagram shown in Fig. 2. We find that by varying only
the chemical potentials we can move between a variety of
extended topological phases with Chern numbers ν = 0,±1,
and ±2.

1. Adiabatic connection to Kitaev’s honeycomb model

We show in Appendix B that our model is adiabatically
connected to Kitaev’s honeycomb model [23]. This connec-
tion, which is schematically illustrated in Fig. 1, enables us
immediately to understand some of the features of the phase
diagram of our model.

First of all, in the limit μ 
 δ the sign staggering becomes
negligible, and when μ 
 t also, the resulting ν = 0 phase
should be identified with a strong pairing-like phase. In the
honeycomb model it corresponds to the dimerized phase,
where the vortices, while exhibiting semionic statistics, do not
bind Majorana modes. Here we are interested in the regime
where the detuning δ is comparable to μ. This regime supports
topological phases characterized by Chern numbers ν = ±1
and ν = ±2 phases, which emerge in the weakly (μ � δ/2)
and strongly (μ � δ/2) staggered regimes, respectively. The
adiabatic connection to the honeycomb model reveals that a
sufficiently staggered chemical potential is equivalent to the
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presence of a background vortex lattice. In particular, we
find that the ν = −1 phase in the weakly staggered regime
corresponds to the absence of a lattice of π -flux vortices, while
the ν = 2 phase in the strongly staggered regime corresponds
to the presence of one [37].

The reason the presence of a vortex lattice in the honeycomb
model gives rise to a Chern number ν = ±2 phase can be
traced back to the properties of the localized Majorana modes
present in the model. The Chern number ν = ±1 phases in
the weakly staggered regime are adiabatically connected to
the non-Abelian phase of the honeycomb model, where the
vortices have explicitly been shown to bind Majorana modes
with short-range interactions [28]. By increasing the chemical
potential staggering a lattice of these vortices is introduced.
The interactions imply that the Majorana modes can hybridize
and form a collective topological state. This mechanism of
topological liquid nucleation has been studied in [29], where
one finds that for regular vortex lattices the resulting state
is always of Abelian nature (characterized by an even Chern
number). Importantly, this collective state is unique: switching
on the vortex lattice will only result in this state if the
vortices bind Majorana modes. This implies that the nucleation
mechanism could be used as an alternative global probe for
the existence of Majorana modes in the model: Detection of
the Chern number change as the vortex lattice is introduced
(staggering is increased) would provide direct evidence for the
existence of Majorana modes in the model.

B. Detection of the phase diagram from the observables

Figure 2 shows the comparison between the Chern numbers
calculated from the ground state and the winding number (5)
calculated from the observables (4) for the black and white
sublattices. In general, we find excellent agreement between
the two invariants. The only discrepancies occur in regions
where the spectral gap is small. As anticipated in Sec. II B, we
can attribute this to the sublattices becoming close to maximal
entanglement. Figure 3 shows the regime where the norm
|Sb/w| becomes small, thus causing numerical errors due to
momentum space coarse graining. So only |ν| may be captured
(which, however, is still sufficient to characterize the type of
topological order). Everywhere else the full Chern number is
accurately reproduced. Thus the sublattice entanglement, as
measured by the norm |Sb/w|, indeed provides a good experi-
mental measure for the fidelity of the winding number (5).

1. Distinguishing topological phases by only
density measurements

In Sec. II C we argued that the parity of the winding numbers
should be detectable from the density measurements only.
These correspond to �z

(i) measurements that, when applied
to our staggered model, will give the compact surfaces Sb(p)
and Sw(p) (see Fig. 4 for an illustration). By applying the
protocol of counting the saddle points, assigning the parities
|ν̃b| and |ν̃w| accordingly, and adding them up, Fig. 5 shows that
we can accurately reproduce the absolute value of the Chern
number everywhere in the phase diagram. To be precise, we
find that the following always holds: (i) N = |ν̃b| + |ν̃w| = 0
always coincides with the trivial ν = 0 phase, (ii) N = 1
always corresponds to the non-Abelian topological phase with

δ
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FIG. 3. (Color online) The sublattice entanglement, as character-
ized by the minimum value minp |Sb/w(p)|, as functions of μ and δ.
Comparison to Fig. 2 shows that the winding number ν̃ reproduces the
Chern number everywhere except where the sublattices are close to
being maximally entangled [minp |Sb/w(p)| � 0.1]. In these regimes
numerical errors due to the momentum space coarse graining become
significant as |Sb/w(p)| becomes very small.

|ν| = 1, and (iii) we find N = 2 only when the system is in
the |ν| = 2 phase. Thus the experimentally accessible density
measurements are sufficient to distinguish between all the
topological phases of our model.

2. Robustness to perturbations

So far we have shown that our detection scheme based on
decomposition to sublattice observables accurately captures
the phase diagram of our model except for special regions
where the sublattices are too entangled. While this imposes
accuracy limitations when applying the scheme, one may also
ask how reliable the scheme is in the presence of perturbations
in the Hamiltonian (11). In Sec. IV we propose an optical
lattice implementation of our model. Here, we consider two
general types of imperfections that one expects to be present
in cold-atom experiments: a harmonic trapping potential that
breaks translational invariance and finite temperature.

We simulate the trap in a finite L × L lattice with open
boundary conditions by introducing in (11) the chemical
potential μj = μ + (−1)jx δ + Md2ω2[(jx − L/2)2 + (jy −
L/2)2], where M is the mass of the atomic species and d is the

Sz

Sz

Sx Sx
Sy 0 0 0.4-0.41-1

0

11

-0.5 0.3 0
0.5

-0.5
0

0.5

-0.5

Sy

FIG. 4. (Color online) Illustration of the vector fields S(i)(p) for
a ν = −1 phase. Here we plot the values of (left) S(b)and (right) S(w)

for (δ,μ) = (1,3). It can be seen that S(b) winds once around the
origin, thus giving a partial |ν̃b| = 1 contribution, while S(w) does not
enclose the origin so it gives zero contribution. Thus we verify that
|ν| = |ν̃b| + |ν̃w|.
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0.5
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FIG. 5. (Color online) Comparison between (left) the winding
number ν̃(w) and (right) its parity as computed from the null-gradient
points of Sz

w . The parity is in perfect agreement across the phase
diagram. The simulation is performed on 20 × 10 lattice sites.

lattice spacing. Assuming that a local-density approximation
holds [38], a spatially dependent chemical potential induces,
in general, the coexistence of different phases: some have
insulating character and some do not; some have topological
order, and some have no order at all. The Chern number is
no longer defined in the absence of translational invariance.
However, the winding number (1) can still be used to identify
the existence of topological order because regions in a trivial
phase do not contribute to the expectation values S(i) [27].
Indeed, Fig. 6 shows that all topological phases are robust for
a wide range of trapping frequencies ω. We conclude that at
least for small perturbing potentials the winding number (5)
will still offer a reliable characterization of the phase diagram.

To model the effect of finite temperature T we restrict
ourselves to fermionic excitations in the lower band with no
thermal vortex excitations. The thermal state is then a product
state in the momentum space. Computing the expectation
values (2) both numerically and analytically, we find that
temperature only leads to a change in the norm of the
observables, Sth

(i)(p,T ) = f (kBT )S(i)(p). While theoretically
such an effect can just be normalized away, experimentally
this corresponds to a reduced visibility [0 < f (kBT ) < 1]
in the time-of-flight measurements. Since the suppression of
the norm, exactly like high entanglement between sublattices,
makes it harder to obtain S(i)(p) accurately, finite temperature
implies that higher-resolution measurements are required.
Assuming that this is within the state-of-the-art experimental
precision, we numerically verify in Fig. 6 that the winding

10 0.1 0.2 0.3 0.4 0.5

-1

0

2

1

ω/t

ν̃

0 0.2 0.4 0.6 0.8
0.4

1

f

1

2

3
ν̃

kBT/t

(δ, μ) = (3, 0)

(δ, μ) = (4, 2)

(δ, μ) = (1, 3)

FIG. 6. (Color online) (left) Winding numbers ν̃ as functions of
the trapping frequency ω in a finite 15 × 15 site system. (right) The
winding number and the visibility, i.e., norm of the vector field
Sth

(i)(p,T ) = f (kBT )S(i)(p,0) at finite temperature T , in a uniform
system without a trap.

number (1) is still faithfully reproduced. Thus we conclude
that finite temperature can be compensated for by increased
precision, and therefore it does not pose a fundamental
challenge for our detection scheme.

IV. OPTICAL LATTICE IMPLEMENTATION
AND THE EXPERIMENTAL DETECTION

OF THE WINDING NUMBERS

In this last section we first outline a scheme to implement
our staggered model with cold atoms in an optical lattice. We
then show how to recover, from time-of-flight images in this
particular setup, the winding numbers with which the phase
diagram from Fig. 2(b) can be experimentally reconstructed.
A quantitative analysis of the parameters for a particular
implementation is left for Appendix C.

A. Optical lattice implementation

As Hamiltonian (11) describes spinless fermions, it can
be implemented with atoms in a single internal state only.
However, it can also be implemented with two atomic states,
which can be advantageous for two reasons. First, by trapping
the distinct atomic states in a checkerboard state-dependent
optical lattice, denoted by the circles and squares in Fig. 1, we
can use Raman-assisted tunneling [39–41] to implement both
the complex tunneling amplitudes and control the chemical
potentials. Second, using two atomic states we can implement
the pairing terms between neighboring sites using s-wave
Feshbach resonances [20,42]. If we were using only a single
atomic state, the Pauli exclusion principle would force us to
employ p-wave Feshbach resonances, which are harder to
observe [16,17].

We propose to generate the lattice of model (11) by focusing
the diffracted image from a holographic mask onto the focal
plane of an extremely large aperture lens [43]. The sublattices
host different hyperfine states of the same atomic species which
are sensitive to different polarizations of the trapping laser
beams. Both sublattices can be displaced one on top of another
by means of an electro-optic modulator [44].

We also superimpose a superlattice potential V =
VOFF sin2(πx/

√
2d), where d is the lattice constant for each

sublattice. VOFF can be controlled by changing the intensity of
the laser beam, which creates this potential. This superlattice
structure effectively adds a tunable energy offset VOFF to
every other column in the lattice. This offset serves a twofold
purpose: it allows for independent Raman tunneling in each
direction and acts as a knob for changing the value of the
chemical potential difference μw − μb, as is shown in Fig. 7.

Our implementation employs a Raman-assisted tunneling
scheme on an optical lattice with a pattern of phases [39–41]
(see Fig. 9 in Appendix B). In Fig. 9 we use the convention that
the tunneling direction is set to go from one species (circle) to
the other (square). Reversing the direction complex conjugates
the tunneling amplitude. The tunneling element between sites
j and j′ in a Raman transition assisted by two lasers of wave
vectors k1 and k2 of amplitude �R can be parameterized as
t = eiq·r+ t0(d,q), where t0 is a real number which only depends
on the nearest-neighbor distance d, the Raman frequency
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VOFF

ω3ω3

ω3
ω3

ω1ω2

μb − μw

(jx, jy) (jx, jy + 1)

(jx + 1, jy + 1) (jx + 1, jy)

FIG. 7. (Color online) Energy-level structure showing how two
sets of Raman beams allow for independent transitions due to the
presence of the offset VOFF. This offset can be tuned to allow for
different values of the difference in chemical potentials μw − μb.
The indices (jx,jy) stand for horizontal and vertical positions on the
lattice, respectively.

�R , and the difference between the Raman beam wave
vectors q = k1 − k2. Also r+ = (j + j′)/2 is the midpoint
between the two neighboring sites. The phase of the hopping
parameter is thus determined by wave vector q. We can
see in Fig. 1 that two different phase wavelengths for the
horizontal and vertical transition amplitudes are needed. So
implementation of this hopping pattern requires a Raman pair
for each direction. Figure 7 shows the energy-level structure
which accomplishes this pattern.

In order to study the experimental feasibility of the pro-
posal, we have considered a possible implementation with 40K
atoms in a state-dependent optical lattice (see Appendix C).
We expect a small heating rate [45] of about 1 Hz, which is
the dominant time scale for decoherence. Using a potential
depth of about 22 recoil energies, ordinary hopping can be
suppressed in each sublattice while still having a significant
overlap between neighboring wave functions: the quantity that
determines the strength of both t and 
. Typical estimates for
the Raman-assisted tunneling [39–41] and the induced s-wave
pairing [20] give us an estimate of about 1 kHz for t and
0.5 kHz for 
. These numbers could be improved through the
use of alkaline-earth atoms [40].

B. Experimental construction of the winding numbers
from time-of-flight images

To obtain the full winding number ν̃ one needs to con-
struct the independent integer-valued winding number ν̃(i)

for each pseudospin component. In the case of our model,
the pseudospin components coincide with the “black” (i = b)
and “white” (i = w) sublattices that are distinguished by their
different chemical potential. In an optical lattice implementa-
tion, this energy offset between the atoms can be employed to
release them from one of the two sublattices at a time and thus
the observables �(i),p for each sublattice can be independently
evaluated. We outline below a general protocol to obtain all
components of the vectors S(i)(p) from which the sublattice
winding numbers ν̃(i) can be constructed.

The experimental measurement of the operators (4) in
an optical lattice setting employs the fact that time-of-
flight images give direct access to the momentum space
densities 〈n(i),p〉 = 〈a†

(i),pa(i),p〉. These are sufficient to fully

determine Sz
(i), which, as discussed in Sec. III B, enables us

to unambiguously distinguish between all the distinct types
of topological phases (different |ν|). Thus the time-of-flight
images, a standard technique in optical lattice experiments,
are sufficient to identify the phases of our model.

In order to construct the full winding number one needs to
obtain also the orthogonal components Sx

(i) and S
y

(i). They can,
in general, be obtained by suitably switching off the pairing
and tunneling terms of (11) before releasing the atoms from
the trap. This will rotate the observables �

x,y

(i),p to �z
(i),p, which

can then be measured from time-of-flight images as above. For
instance, when hopping in both directions and pairing in the
x direction are suppressed, e.g., by raising the lattice in this
direction, the Hamiltonian (11) acquires the form

Hrot = 
 sin(py)i(a†
(i),pa

†
(i),p − H.c.) ∝ �

y

(i),p. (12)

This operator implements a rotation around the Sy axis,
mapping the value of the Sx operator onto the Sz axis, which
after time t gives

Sz(p,t) = cos(θp)Sz(p,0) + sin(θp)Sx(p,0), (13)

with θ = 
 sin(py)t/h̄. The time-of-flight image can again
be used to measure this quantity from which the value of Sx

can be extracted once the unrotated component Sz(p,0) has
been determined. Finally, the value of Sy can be obtained
experimentally using a similar two-step process as above.
Evolving the system with only hopping along the y direction
maps Sy to Sx , which when followed by a pairing evolution
can again be mapped to the directly observable Sz.

The dependence of the evolution (13) on the momentum
py implies that the Hamiltonian rotations around py = 0,

±π/2,±π will be infinitely slow. This experimental challenge
can be overcome in two ways. One way is to numerically
postprocess the measurements by extrapolating smoothly
the values of S from the measurements of Sz,Sx , and Sy .
We have numerically verified that, given |S| does not become
zero anywhere and that the angles in the xy plane behave
smoothly across the Brillouin zone, this can be efficiently
performed. An alternative is to use additional complementary
noise correlation measurements 〈n(i),pn(i),−p〉. Using Wick’s
theorem such an observable can be written in the form

〈n(i),pn(i),−p〉 = 〈n(i),p〉〈n(i),−p〉 + |〈a†
(i),pa

†
(i),−p〉|2

+〈a†
(i),pa(i),−p〉〈a(i),pa

†
(i),−p〉. (14)

As 〈n(i),p〉 follows from the usual time-of-flight images and
〈a(i),pa

†
(i),−p〉 can be obtained from them after Bragg scattering

with momentum 2p (for our model they always vanish), in
essence noise correlations give us access to the orthogonal
projection of the pseudospin components, (S⊥)2 = (Sx)2 +
(Sy)2. Thus once Sx has been obtained, the noise correlations
can be employed as an alternative way to obtain Sy .

V. CONCLUSIONS

We have presented a general method to detect the Chern
number of superconducting models from time-of-flight im-
ages. This method is readily applicable to any topological
superconducting state regardless of the microscopic realization
[19–21]. Our method is particularly suited for optical lattice
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experiments where time-of-flight images, a standard tech-
nique, readily give access to the relevant operators for each
pseudospin component, such as spin orientation, internal
atomic states, or sublattices due to staggering. While not
restricted only to, our method is particularly suited for optical
lattice experiments where time-of-flight images, a standard
technique, readily give access to the relevant operators. We
presented a full set of experimental manipulations for the
reconstruction of the Chern number. We also showed that the
time-of-flight images without additional manipulation can give
sufficient information (the absolute value of the Chern number)
to distinguish between the different types of topological order.
With the preparation of topologically ordered states with cold
atoms in optical lattices as the ultimate goal, this provides a
simple and reliable diagnostic tool to probe the nature of the
prepared states.

To demonstrate our detection scheme, we applied it to a
model of staggered spinless fermions with s-wave pairing, a
new route to topological phases with cold atoms. We could ro-
bustly identify topological phases with Chern numbers ν = 0,
ν = ±1, and ν = ±2. The few disagreeing parameter regimes
were found to correlate with high sublattice entanglement,
which in itself is a physical observable. Thus the detection
scheme has a built-in fidelity measure that can be used to
evaluate its reliability in reproducing the Chern numbers.
Furthermore, we showed that the detection scheme remains
robust under two omnipresent perturbations in cold-atom ex-
periments: translational invariance-breaking trapping potential
and finite temperature. The latter could be compensated for
by increasing detection precision, which contrasts with the
behavior of topological entanglement entropy, an alternative
probe for topological order in cold-atom systems [46]. In the
thermodynamic limit it vanishes at any finite temperature, ren-
dering its applicability challenging [47,48]. In addition, unlike
our method topological entropy cannot distinguish topological
phases with the same total quantum dimensions [2].

Finally, we explicitly demonstrated that the proposed model
of staggered spinless fermions with s-wave pairing could be
adiabatically connected to Kitaev’s honeycomb model [23].
The proposed optical lattice implementation would thus offer
an alternative route for realizing this celebrated model. In our
realization we could relate the staggering in the chemical
potential, an experimentally accessible parameter, to the
presence or absence of a background vortex lattice. We showed
that the presence of such a lattice underlies the Chern number
ν = ±2 phases and that these phases should be understood
as unique collective states of Majorana modes bound to the
vortices, as studied in detail in [29]. As this phase can only
arise as the collective state of Majorana modes, detecting the
change in the Chern number when the vortex lattice is switched
on provides a global probe for the existence of Majorana
modes.
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APPENDIX A: CHIRAL TOPOLOGICAL ORDER
WITH s-WAVE PAIRING

In this Appendix we first give the analytic solution to
our staggered superconducting model. Then we verify the
existence of edge states that together with particle-hole
symmetry imply that the phases with odd Chern numbers
support localized Majorana modes. Finally, we discuss the
interpretation of the staggered tunneling as an effective spin-
orbit coupling.

1. Analytic solution

The Hamiltonian (11) can be Fourier transformed with
respect to the two-site unit cell illustrated in Fig. 1. Writing
it in the particle-hole basis ψ†

p = (a†
b,p,a

†
w,p,ab,−p,aw,−p), we

obtain the quadratic Bogoliubov–de Gennes Hamiltonian H =∫
BZ

ψ†
pH (p)ψpd

2p, where

H (p) =

⎛
⎜⎜⎜⎝

f+ ig∗
+ ih g∗

−
−ig+ f− −g− ih

−ih −g∗
− −f+ ig∗

+
g− −ih −ig+ −f−

⎞
⎟⎟⎟⎠ , (A1)

with

f± = (μ ± δ) + 2t cos(py), g+ = t(1 + e2ipx ),

g− = 
(1 − e2ipx ), h = 2
 sin(py).

The Hamiltonian can be diagonalized with a Bogoliubov
transformation, which gives the four particle-hole symmetric
energy bands,

E±
n (p) = ±

√
A(p) + (−1)n

√
A2(p) − 4B(p), (A2)

where

A(p) = f 2
+ + f 2

− + 4(|g+|2 + h2 + |g−|2),

B(p) = |g+|4 + h4 + |g−|4 + f 2
+f 2

−
+h2(f 2

+ + f 2
−) − 2f+f−(|g+|2 − |g−|2)

− 2h2(|g+|2 + |g−|2) − 2Re(g−g∗
+)2.

The particle-hole symmetry is represented by C = σx ⊗ 11,
which swaps the creation and annihilation operators of
opposite momenta. It acts on (A1) as

CH (p)C−1 = −H ∗(−p), (A3)

which implies that zero-energy eigenstates at the momenta
p = (0,0),(0,π ) will be self-conjugate. Figure 8 shows that in
the ν = 1 and ν = 2 phases the edge states indeed cross zero
energy at these momenta, implying that they are (dispersing)
Majorana modes. In the presence of a vortex (a puncture in the
plane with π flux through it), they will thus become localized
at the vortex cores [4]. An odd number of edge states (odd ν)
implies that an isolated Majorana mode will always remain
localized at zero energy at the vortex core, while an even
number of them (even ν) leads to complete hybridization with
all the Majorana modes pairing up to localized Dirac fermions.
In the ν = 0 phases no edge states cross zero energy (although
high-energy edge states can still exist, as shown in Fig. 8),
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FIG. 8. Edge states in the different topological phases. The spec-
tral flow on a cylinder (open boundary conditions in the x direction)
for the (a) ν = 0 [(δ,μ) = (5,0)], (b) ν = 1 [(δ,μ) = (5,2)], and
(c) ν = 2 [(δ,μ) = (2,0)] phases shows |ν| edge states per edge
crossing zero energy. The plots are for t = 
 = 1.

and vortices will not bind localized low-energy states of either
Majorana or Dirac type.

2. Staggered tunneling as an effective spin-orbit coupling

Another way of understanding the emergence of localized
Majorana modes is to consider our model an anisotropic analog
of spin-orbit coupled systems in the proximity of a regular
s-wave superconductor [36]. Let us consider the different
couplings of the Hamiltonian (11) separately.

Staggering in the tunneling phases and in chemical potential
breaks translational symmetry to a subgroup such that the
system is still translationally invariant with respect to a
two-site “magnetic” unit cell. For the coupling pattern shown
in Fig. 1, we color these two sites as black (b) and white
(w). This sublattice degree of freedom can be interpreted as a
pseudospin τ ∈ (b,w) of the fermions a

†
j,τ . Using the “spinor”

ψ
†
j = (a†

b,j,a
†
w,j), we can rewrite the different terms of (11) in

the following way:

μja
†
j aj → μψ

†
j ψj + Vzψ

†
j τ

zψj,

i(−1)jx ta
†
j aj+x̂ → αψ

†
j τ

yψj+x̂ + Vyψ
†
j τ

yψj,

ta
†
j aj+ŷ → tψ

†
j ψj+ŷ, (A4)


a
†
j a

†
j+x̂ → 
ψ

†
j τ

xψ
†
j + 
ψ

†
j τ

xψ
†
j+x̂,


a
†
j a

†
j+ŷ → 
ψ

†
j ψ

†
j+ŷ.

The Pauli matrices τα act on the pseudospin degree of freedom.
This suggests the following interpretation in terms of the
fermions ψ

†
j :

(i) μ still acts as the chemical potential, while the detuning
acts now effectively as a Zeeman term of magnitude Vz = δ.

(ii) Tunneling in the x direction realizes an anisotropic
Rashba-type spin-orbit coupling pxσ

y of magnitude α = t

and a transverse magnetic field of magnitude Vy = t .
(iii) Pairing will be of uniform amplitude 
, but it will be an

anisotropic mixture of singlet (x direction) and triplet pairing
(y direction).

The elements above, the spin-orbit coupling, magnetic
fields of different direction, and the s-wave pairing, are the
components of the Majorana mode hosting semiconductor
heterostructures [36]. It would be interesting to study how
far the analogy between staggered tunneling and spin-orbit
coupling could be pushed.

APPENDIX B: ADIABATIC CONNECTION TO KITAEV’S
HONEYCOMB LATTICE MODEL

In this Appendix we demonstrate that our staggered
model (11) is adiabatically connected to Kitaev’s honeycomb
model [23], which is known to support localized Majorana
modes with short-range interactions [28]. We show this
explicitly for the ν = 2 phase, which we connect to the ν = 2
phase arising in the full-vortex sector as the unique collective
state of the Majorana modes bound at the vortex cores [29,37].

In a nutshell, the honeycomb model is a local spin-lattice
model that contains nearest-neighbor two-spin interactions
(of magnitudes Jx,Jy , and Jz depending on link orientations)
and next-nearest-neighbor three-spin interactions (of magni-
tude K) that break time-reversal symmetry. When mapped
to a tight-binding model of free Majorana fermions on the
honeycomb lattice, the spin interactions map into nearest-
and next-nearest-neighbor tunneling, respectively. The model
becomes exactly solvable when restricted to a particular
symmetry sector that corresponds to some background pattern
of π -flux vortices [23].

We are interested in the full-vortex sector (π flux on each
hexagonal plaquette), which supports topological phases with
Chern numbers ν = 0, ± 1, and ±2 [37]. When the honey-
comb model is restricted to it, the tight-binding Hamiltonian
can be written as [49]

Hf.v. = i
∑

j

[(−1)jx Jzajbj + Jxajbj+x̂ + Jyajbj+ŷ]

+ iK
∑

j

(−1)jx [ajaj−x̂ + ajaj+ŷ + bjbj+x̂ + bjbj−ŷ],

(B1)

where a
†
j = aj and b

†
j = bj are Majorana operators on the two

triangular sublattices of the honeycomb lattice. To simplify the
demonstration of the adiabatic connection, we have included
only four out of the six possible next-nearest-neighbor hop-
pings, as illustrated in Fig. 9. The omitted terms are ajaj+x̂+ŷ
and bjbj+x̂+ŷ, which have been shown to be adiabatically
tunable to zero while staying in the same phase [24].

The full-vortex sector is encoded in the (−1)jx factors that
stagger the signs of the Majorana hopping amplitudes Jz and
K . Pairing the Majorana operators into complex fermions cj
by

aj = eiθjcj + e−iθjc
†
j , bj = 1

i
(eiθjcj − e−iθjc

†
j ), (B2)

with the phase θj to be defined below, the vertical links with
couplings Jz connecting the aj and bj sites of the honeycomb
lattice become the sites of a square lattice, as illustrated in
Fig. 9. The Hamiltonian takes the form

Hf.v. =
∑

j

[μjc
†
j cj + txj c

†
j cj+x̂ + t

y

j c
†
j cj+ŷ

×
xcjcj+x̂ + 
ycjcj+ŷ] + H.c., (B3)

where we have defined

μj = 2Jz(−1)jx , txj = rei(−1)jx (2−(−1)jy )φ,

t
y

j = 2Je−i(−1)jx+jy φ, 
x = 2J, (B4)


y = r,
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FIG. 9. (Color online) (left) The honeycomb model (B1) with a π

flux on every plaquette. When mapped into a tight-binding model of
Majorana fermions, the nearest-neighbor hopping is along the solid
links (of magnitude Jz along the vertical links and Jx or Jy along
the other two oriented links) and the included next-nearest-neighbor
hopping is along the dashed ones (of uniform magnitude K). The
vortex lattice is encoded in the staggered signs of the Jz hopping [37].
When the Majorana fermions are paired into complex fermions,
the vertical links become the sites of a square lattice, with Jz

translating into a sign-staggered chemical potential. (right) When
the tunneling couplings tx

j and t
y

j in (B4) are explicitly written
out, one finds six independent couplings, which we denote as
tx
1 ,tx

2 ,tx
3 ,tx

4 ,t
y

1 , and t
y

2 . Redefining the operators on the circle (square)
sites by cj → eiχ cj(cj → e−iχ cj) preserves the real pairing potential
for arbitrary χ , while unitarily transforming the hopping amplitudes.
For χ = φ/2 − π/4 they are brought to the form (B5).

with J = Jx = Jy , r =
√

(2J )2 + (4K)2, and φ =
arctan (J/(2K)). In terms of these variables the local phase θj
in (B2), which is chosen such that the pairing potentials 
x

and 
y are real, is given by θj = −(−1)jx 1−(−1)jy

2 φ.
The variables txj , t

y

j , r and φ are all functions of the
honeycomb couplings J , Jz and K . From now on we will
treat them as independent variables and show that (B3) can
be adiabatically connected to (11). We do this by explicitly
constructing a path in the parameter space along which the
energy gap remains finite. Due to the periodically alternating
signs in the chemical potential μj, we begin with identifying
the detuning δ with 2Jz, where the overall chemical potential
is set to μ = 0. The first segment of the adiabatic path consists
of tuning r → 2J ≡ t , which makes both the tunneling
and pairing amplitudes equal (|txj | = |tyj | = 
x = 
y = t).
Fig. 10 shows the gap essentially remaining constant during
this process.

At the second segment we tune the phases of txj and t
y

j to
match those of (11). Writing out the tunneling terms explicitly,
we find the periodic pattern to consist of six independent ones,
which are unitarily equivalent to

tx1 = teiπ/2 → it,

tx2 = te−iπ/2 → −it,

tx3 = te4iφ−iπ/2 → it,

tx4 = te−4iφ+iπ/2 → −it, (B5)

t
y

1 = te−2iφ+iπ/2 → t,

t
y

2 = te2iφ−iπ/2 → t,

as illustrated in Fig. 9. The arrow denotes the second segment
of the adiabatic path where we tune φ → π/4 to make the

FIG. 10. Adiabatic connection between the ν = 2 phases in the
full-vortex sector of the honeycomb model and in (11). We set Jz =
J = 1 and K = −0.1, which through the identifications (B4) give the
chemical potential δ = 2, μ = 0, while for the coupling amplitudes
we get 
x = |ty

j | = 2 and 
y = |tx
j | = √

4.16 ≈ 2.04. (left) In the
first segment of the adiabatic path we tune t = 
y = |tx

j | → 
x =
|ty

j | to equalize all the amplitudes. The plot shows the energy

gap of Hf.v.[t(x)], where t(x) = (1 − x)
√

4.16 + 2x, increasing
monotonously during the process. (right) At the second step we tune
the tunneling phase φ = arctan(5) → π/4. The plot shows the energy
gap of Hf.v.[φ(x)], where φ(x) = (1 − x)arctan(5) + x π

4 , again first
increasing and then settling to a constant value. Both transitions are
performed with a linear ramp parameterized by x ∈ [0,1].

tunneling phases match those of (11). Figure 10 shows the
gap remaining again robust, which implies that our staggered
model of spinless fermions is adiabatically connected to
Kitaev’s honeycomb model in the full-vortex sector. Indeed,
for equal couplings J = Jz = 1 and K < 0 the honeycomb
model is known to be in a ν = 2 phase [29,37]. These
honeycomb couplings correspond to t = 
x = 
y = δ = 2
and μ = 0 for which, as shown in Fig. 2, we also find a ν = 2
phase.

The phase diagram of the full-vortex sector of the hon-
eycomb model has been studied in [37]. The adiabatic
connection between the models enables us to understand some
of the features of the phase diagram of our model. First, we
showed above that the full-vortex sector with equal couplings
|Jx | = |Jy | = |Jz| can be mapped onto the μ = 0, δ > 0 line
of Fig. 2. Thus we can immediately understand the ν = 2
phase to correspond to the ν = 2 phase in the honeycomb
model that is known to arise as the unique collective state of
the Majorana modes bound to the vortex cores [29]. When
the staggering δ = 2Jz of the hopping in (B1) is gradually
suppressed by introducing a finite μ by hand, it has been
shown that for μ � δ/2 the non-Abelian ν = 1 phase is
recovered, even if some sign staggering remains. This is
in agreement with Fig. 2, which shows along the μ ≈ δ/2
line a similar transition between the Abelian ν = 2 and the
non-Abelian ν = −1 phases (the change in the sign of the
Chern number does not occur in the honeycomb model, but due
to adiabatic deformation we expect only qualitatively similar
behavior in our model). The μ > δ/2 region of our model is
thus adiabatically connected to the non-Abelian phase in the
vortex-free sector (which in turn is adiabatically connected
to the weak-pairing phase of a p-wave superconductor [24]).
If isolated vortices were introduced there, they would bind
localized Majorana modes with short-range interactions [28].
Finally, in the dimerized limits |Jz| 
 |J | one should always
find a ν = 0 phase, which corresponds to the strong-pairing
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phase in p-wave superconductors. Indeed, Fig. 2 shows a ν = 0
phase emerging in both δ 
 μ and μ 
 δ limits.

APPENDIX C: QUANTITATIVE ANALYSIS
OF THE OPTICAL LATTICE PARAMETERS

We now provide a quantitative analysis to justify the
feasibility of the model implementation in this work. Together
with our own numerical simulations, we rely on the analysis
provided in Refs. [20,40,50]. We particularize our results to
two interpenetrated square lattices, each of them with lattice
constant d � 400 nm and hosting a hyperfine state of 40K.

The energy scale of the model parameters is constrained to
an interval which depends on the lattice depth. This interval is
bounded from below by the heating rates and the suppressed
natural hopping within sublattices; it is bounded from above
by the separation between lattice bands. We will show that
all model parameters fit within this energy-scale window,
demonstrating the feasibility of the proposed implementation.

We first focus on the lower end of this interval. The natural
hopping parameter decreases roughly exponentially with the
lattice depth. Our numerical simulations (Fig. 11) show that
the hopping reaches a value of tNat � 10−3ER for a lattice
with depth V0 � 22ER , where V0 is the lattice depth and ER is
the recoil energy of the lattice (around ER/h = 8 kHz for the
choice above). Therefore, we can expect a natural hopping of
the order of 5 Hz. Our results are in agreement with previous
analytical estimates [51].

The second constraint lower bound of our interval of
acceptable parameters is provided by the photon scattering
rate, which increases with the depth the lattice. These heating
rates are a significant problem for state-dependent setups
because in these designs the maximum detuning of light
is limited by the energy splitting between hyperfine states.
More precisely, the heating rate can be estimated as γh �
(�/δDeph)V0, where � is the spontaneous emission rate of the
atom and δDeph is the detuning. The ratio �/δDeph critically
depends on the atomic species, ranging from about 0.1/h for
6Li to about 10−5/h for 40K. We focus on this last atomic
element, obtaining a heating rate of about 1–2 Hz for the
above-mentioned V0 ∼ 22ER , but we note the possibility of
using alkaline-earth atoms to bring this value down to about
0.01 Hz [40].

Finally, all energy scales must be significantly smaller than
the band gap 
Egap. Our simulations evaluate this band gap to
be over 60 kHz for our V0 � 22ER lattice (Fig. 11). Again this
result agrees with comparable calculations in similar setups

5 10 15 20 30
10-4

10
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25

10-3

10-2

10-1

1

V0/ER

ΔEgap/ER

|S(d)|

tNat/ER

FIG. 11. (Color online) Realistic band-structure simulation of the
intertwined lattice setup. The left axis is the dependence of the natural
hopping tNat (black solid line) and the overlap between neighboring
wave functions |S(d)| (black dashed line) on V0/ER . The right axis
is the dependence of the band gap 
Egap (blue dotted line) on the
lattice depth, V0/ER .

[40]. In summary, our parameters (μb − μw,t,
) should
all move in the 0.1–1-kHz range in order to successfully
implement our proposed model.

The chemical potential difference δ can independently be
tuned by the auxiliary offset lattice intensity VOFF. This offset
can be easily set to the desired energy range since it just
requires a superlattice modulation which is much smaller than
the intensity of the main lattice (VOFF < ER).

The Raman tunneling t is proportional to the Raman beam
intensity, |t | = h̄�S(d), and the overlap between Wannier
wave functions w(x,y) in neighboring wells of the su-
perlattice, S(d) = ∫∫

w�(x,y)w(x − d/2,y − d/2)dxdy. We
estimate numerically this overlap to be S � 10−2 for V0 =
22ER (Fig. 11). Therefore, a feasible value � ∼ ER/h̄ would
keep |t | in the desired 1-kHz order of magnitude.

Finally, the pairing 
 depends on the strength of the
coupling to the molecular reservoir and the bosonic bath
density [50] as |
| = g

√
ρS(d). The overlap of the fermionic

wave functions again plays an important role, and we assume
the density profile of the bosonic bath to be uniform. Estimates
from previous proposals [20] based on condensed fermionic
pair experiments [52] show that |
| � 0.5 kHz is challenging
but possible between nearest neighbors of the superlattice.
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