12,503 research outputs found

    Non-localities and Fermi motion corrections in KK^- atoms

    Get PDF
    We evaluate the p-wave KNK^-N amplitudes from the chiral Lagrangians and from there construct the p-wave part of the KK^- nucleus optical potential plus a small s-wave part induced from the elementary p-wave amplitude and the nuclear Fermi motion. Simultaneously, the momentum and energy dependence of the s-wave optical potential, previously developed, are taken into account and shown to generate a small p-wave correction to the optical potential. All the corrections considered are small compared to the leading s-wave potential, and lead to changes in the shifts and widths which are smaller than the experimental errors. A thorough study of the threshold region and low densities is conducted, revealing mathematical problems for which a physical solution is given.Comment: revised version, 28 pages, Latex, 8 postscript figures. Submitted to Nucl. Phys.

    Intrinsic structure of two-phonon states in the interacting boson model

    Get PDF
    A general study of excitations up to two-phonon states is carried out using the intrinsic-state formalism of the Interacting Boson Model (IBM). Spectra and transitions for the different dynamical symmetries are analyzed and the correspondence with states in the laboratory frame is established. The influence of multi-phonon states is discussed. The approach is useful in problems where the complexity of the IBM spectrum renders the analysis in the laboratory frame difficult.Comment: 22 pages, TeX (ReVTeX). 7 eps figures. Submitted to Nucl. Phys.

    Nuclear binding energies: Global collective structure and local shell-model correlations

    Get PDF
    Nuclear binding energies and two-neutron separation energies are analyzed starting from the liquid-drop model and the nuclear shell model in order to describe the global trends of the above observables. We subsequently concentrate on the Interacting Boson Model (IBM) and discuss a new method in order to provide a consistent description of both, ground-state and excited-state properties. We address the artefacts that appear when crossing mid-shell using the IBM formulation and perform detailed numerical calculations for nuclei situated in the 50-82 shell. We also concentrate on local deviations from the above global trends in binding energy and two-neutron separation energies that appear in the neutron-deficient Pb region. We address possible effects on the binding energy, caused by mixing of low-lying 0+0^{+} intruder states into the ground state, using configuration mixing in the IBM framework. We also study ground-state properties using a deformed mean-field approach. Detailed comparisons with recent experimental data in the Pb region are amply discussed.Comment: 69 pages, TeX (ReVTeX). 23 eps figures. 1 table. Modified version. Accepted in Nucl. Phys.

    Charmed hadrons in nuclear medium

    Get PDF
    We study the properties of charmed hadrons in dense matter within a coupled-channel approach which accounts for Pauli blocking effects and meson self-energies in a self-consistent manner. We analyze the behaviour in this dense environment of dynamically-generated baryonic resonances as well as the open-charm meson spectral functions. We discuss the implications of the in-medium properties of open-charm mesons on the Ds0(2317)D_{s0}(2317) and the predicted X(3700) scalar resonances.Comment: 4 pages, 5 figures, invited parallel talk in the 5th International Conference on Quarks and Nuclear Physics (QNP09), Beijing, September 21-26, 200

    Strange and charm mesons at FAIR

    Get PDF
    We study the properties of strange and charm mesons in hot and dense matter within a self-consistent coupled-channel approach for the experimental conditions of density and temperature expected for the CBM experiment at FAIR/GSI. The in-medium solution at finite temperature accounts for Pauli blocking effects, mean-field binding of all the baryons involved, and meson self-energies. We analyze the behaviour in this hot and dense environment of dynamically-generated baryonic resonances together with the evolution with density and temperature of the strange and open-charm meson spectral functions. We test the spectral functions for strange mesons using energy-weighted sum rules and finally discuss the implications of the properties of charm mesons on the D_{s0}(2317) and the predicted X(3700) scalar resonances.Comment: 12 pages, 9 figures, invited talk at XXXI Mazurian Lakes Conference on Physics: Nuclear Physics and the Road to FAIR, August 30-September 6, 2009, Piaski, Polan

    Chiral dynamics of hadrons in nuclei

    Get PDF
    In this talk I report on selected topics of hadron modification in the nuclear medium using the chiral unitary approach to describe the dynamics of the problems. I shall mention how antikaons, η\eta, and ϕ\phi are modified in the medium and will report upon different experiments done or planned to measure the ϕ\phi width in the medium.Comment: 10 pgs, 3 figs. Invited talk in the Workshop on in Medium Hadron Physics, Giessen, Nov 200

    Charmed mesons in nuclear matter

    Full text link
    We obtain the properties of charmed mesons in dense matter using a coupled-channel approach which accounts for Pauli blocking effects and meson self-energies in a self-consistent manner. We study the behaviour of dynamically-generated baryonic resonances together with the open-charm meson spectral functions in this dense nuclear environment. We discuss the implications of the in-medium properties of open-charm mesons on the Ds0(2317)D_{s0}(2317) and the predicted X(3700) scalar resonances, and on the formation of DD-mesic nuclei.Comment: 5 pages, 5 figures, 1 table, to appear in Proceedings of XIII International Conference on Hadron Spectroscopy, November 29 - December 4, 2009, Florida State Universit

    Understanding herbivore-plant-soil feedbacks to improve grazing management on Mediterranean mountain grasslands

    Get PDF
    The surface of many European mountain grasslands is decreasing due to global change and extensive grazing stands out as a key tool for their conservation. Sound knowledge of grassland ecosystem functioning and its feedback processes is required to implement sustainable grazing management. This study aimed to understand the effect of different grazing intensities on herbivore-plant-soil feedbacks in Mediterranean mountain grasslands. We estimated spatial distribution of sheep grazing intensity using GPS technology in order to assess the effect of grazing pressure on vegetation and soil properties measured throughout the study area. Our results showed that grazing intensity ranged from 0.06 to 2.85 livestock units / ha, corresponding to a gradient of pasture utilisation rates varying from 2.38% to 45.60% of annual productivity from pasture. Increasing grazing pressure was associated with smaller relative cover and species richness of non-leguminous forbs, while the opposite trends were observed for graminoids. Forage had a greater concentration of N and smaller C:N ratio in more heavily grazed areas. Increasing grazing intensity was also associated with higher values of total soil N, NO3-, NH4+, soil organic carbon, microbial biomass C and activity of ß-glucosidase. Higher litter quality was the main factor explaining greater content of soil organic matter, which favoured both soil microbes and plant productivity. Grazing induced changes in the plant community triggered positive hervibore-plant-soil feedbacks, as they ultimately improved forage quality and productivity, which significantly influenced the pasture preference of free-ranging domestic grazers. Our work showed that grazing management aiming pasture utilisation rates of around 45% is critical in sustaining positive herbivore-plant-soil feedbacks and preserving or enhancing the whole ecosystem functioning in the Mediterranean mountain grasslands studied. © 2021 The Author
    corecore