51 research outputs found

    Latent class modelling with a time-to-event distal outcome: A comparison of one, two and three-step approaches

    Get PDF
    Latent class methods can be used to identify unobserved subgroups which differ in their observed data. Researchers are often interested in outcomes for the identified subgroups and in some disciplines time-to-event outcome measures are common, e.g., overall survival in oncology. In this study Monte Carlo simulation is used to evaluate the empirical properties of latent class effect estimates on a time-to-event distal outcome using one, two and three-step approaches. Both standard and inclusive bias-corrected three-step approaches are considered. One-step latent class effect estimates are shown to be superior to the evaluated alternatives. Both the two-step approach and a standard three-step approach, where subjects are partially assigned to latent classes, produced unbiased estimates with nominal confidence interval coverage when latent classes were well separated, but not otherwise. Keywords: latent class analysis, time-to-event, two-step, joint modeling</p

    Fast approximate inference for multivariate longitudinal data

    Get PDF
    Collecting information on multiple longitudinal outcomes is increasingly common in many clinical settings. In many cases, it is desirable to model these outcomes jointly. However, in large data sets, with many outcomes, computational burden often prevents the simultaneous modeling of multiple outcomes within a single model. We develop a mean field variational Bayes algorithm, to jointly model multiple Gaussian, Poisson, or binary longitudinal markers within a multivariate generalized linear mixed model. Through simulation studies and clinical applications (in the fields of sight threatening diabetic retinopathy and primary biliary cirrhosis), we demonstrate substantial computational savings of our approximate approach when compared to a standard Markov Chain Monte Carlo, while maintaining good levels of accuracy of model parameters

    The effect of random-effects misspecification on classification accuracy

    Get PDF
    Mixed models are a useful way of analysing longitudinal data. Random effects terms allow modelling of patient specific deviations from the overall trend over time. Correlation between repeated measurements are captured by specifying a joint distribution for all random effects in a model. Typically, this joint distribution is assumed to be a multivariate normal distribution. For Gaussian outcomes misspecification of the random effects distribution usually has little impact. However, when the outcome is discrete (e.g. counts or binary outcomes) generalised linear mixed models (GLMMs) are used to analyse longitudinal trends. Opinion is divided about how robust GLMMs are to misspecification of the random effects. Previous work explored the impact of random effects misspecification on the bias of model parameters in single outcome GLMMs. Accepting that these model parameters may be biased, we investigate whether this affects our ability to classify patients into clinical groups using a longitudinal discriminant analysis. We also consider multiple outcomes, which can significantly increase the dimensions of the random effects distribution when modelled simultaneously. We show that when there is severe departure from normality, more flexible mixture distributions can give better classification accuracy. However, in many cases, wrongly assuming a single multivariate normal distribution has little impact on classification accuracy

    Identification of patients who will not achieve seizure remission within 5 years on AEDs

    Get PDF
    Objective: To identify people with epilepsy who will not achieve a 12-month seizure remission within 5 vyears of starting treatment. Methods: The Standard and New Antiepileptic Drug (SANAD) study is the largest prospective study in patients with epilepsy to date. We applied a recently developed multivariable approach to the SANAD dataset that takes into account not only baseline covariates describing a patient’s history before diagnosis but also follow-up data as predictor variables. Results: Changes in number of seizures and treatment history were the most informative timedependent predictors and were associated with history of neurologic insult, epilepsy type, age at start of treatment, sex, and having a first-degree relative with epilepsy. Our model classified 95% of patients. Of those classified, 95% of patients observed not to achieve remission at 5 years were correctly classified (95% confidence interval [CI] 89.5%–100%), with 51% identified by 3 years and 90% within 4 years of follow-up. Ninety-seven percent (95% CI 93.3%–98.8%) of patients observed to achieve a remission within 5 years were correctly classified. Of those predicted not to achieve remission, 76% (95% CI 58.5%–88.2%) truly did not achieve remission (positive predictive value). The predictive model achieved similar accuracy levels via external validation in 2 independent United Kingdom–based datasets. Conclusion: Our approach generates up-to-date predictions of the patient’s risk of not achieving seizure remission whenever new clinical information becomes available that could influence patient counseling and management decisions

    A Feasibility Study of Quantifying Longitudinal Brain Changes in Herpes Simplex Virus (HSV) Encephalitis Using Magnetic Resonance Imaging (MRI) and Stereology.

    Get PDF
    OBJECTIVES: To assess whether it is feasible to quantify acute change in temporal lobe volume and total oedema volumes in herpes simplex virus (HSV) encephalitis as a preliminary to a trial of corticosteroid therapy. METHODS: The study analysed serially acquired magnetic resonance images (MRI), of patients with acute HSV encephalitis who had neuroimaging repeated within four weeks of the first scan. We performed volumetric measurements of the left and right temporal lobes and of cerebral oedema visible on T2 weighted Fluid Attenuated Inversion Recovery (FLAIR) images using stereology in conjunction with point counting. RESULTS: Temporal lobe volumes increased on average by 1.6% (standard deviation (SD 11%) in five patients who had not received corticosteroid therapy and decreased in two patients who had received corticosteroids by 8.5%. FLAIR hyperintensity volumes increased by 9% in patients not receiving treatment with corticosteroids and decreased by 29% in the two patients that had received corticosteroids. CONCLUSIONS: This study has shown it is feasible to quantify acute change in temporal lobe and total oedema volumes in HSV encephalitis and suggests a potential resolution of swelling in response to corticosteroid therapy. These techniques could be used as part of a randomized control trial to investigate the efficacy of corticosteroids for treating HSV encephalitis in conjunction with assessing clinical outcomes and could be of potential value in helping to predict the clinical outcomes of patients with HSV encephalitis

    Brain alterations in regions associated with end‐organ diabetic microvascular disease in diabetes mellitus: A UK Biobank study

    Get PDF
    Background Diabetes mellitus (DM) is associated with structural grey matter alterations in the brain, including changes in the somatosensory and pain processing regions seen in association with diabetic peripheral neuropathy. In this case-controlled biobank study, we aimed to ascertain differences in grey and white matter anatomy in people with DM compared with non-diabetic controls (NDC). Methods This study utilises the UK Biobank prospective, population-based, multicentre study of UK residents. Participants with diabetes and age/gender-matched controls without diabetes were selected in a three-to-one ratio. We excluded people with underlying neurological/neurodegenerative disease. Whole brain, cortical, and subcortical volumes (188 regions) were compared between participants with diabetes against NDC corrected for age, sex, and intracranial volume using univariate regression models, with adjustment for multiple comparisons. Diffusion tensor imaging analysis of fractional anisotropy (FA) was performed along the length of 50 white matter tracts. Results We included 2404 eligible participants who underwent brain magnetic resonance imaging (NDC, n = 1803 and DM, n = 601). Participants with DM had a mean (±standard deviation) diagnostic duration of 18 ± 11 years, with adequate glycaemic control (HbA1C 52 ± 13 mmol/mol), low prevalence of microvascular complications (diabetic retinopathy prevalence, 5.8%), comparable cognitive function to controls but greater self-reported pain. Univariate volumetric analyses revealed significant reductions in grey matter volume (whole brain, total, and subcortical grey matter), with mean percentage differences ranging from 2.2% to 7% in people with DM relative to NDC (all p < 0.0002). The subcortical (bilateral cerebellar cortex, brainstem, thalamus, central corpus callosum, putamen, and pallidum) and cortical regions linked to sensorimotor (bilateral superior frontal, middle frontal, precentral, and postcentral gyri) and visual functions (bilateral middle and superior occipital gyri), all had lower grey matter volumes in people with DM relative to NDC. People with DM had significantly reduced FA along the length of the thalamocortical radiations, thalamostriatal projections, and commissural fibres of the corpus callosum (all; p < 0·001). Interpretation This analysis suggests that anatomic differences in brain regions are present in a cohort with adequately controlled glycaemia without prevalent microvascular disease when compared with volunteers without diabetes. We hypothesise that these differences may predate overt end-organ damage and complications such as diabetic neuropathy and retinopathy. Central nervous system alterations/neuroplasticity may occur early in the natural history of microvascular complications; therefore, brain imaging should be considered in future mechanistic and interventional studies of DM
    • 

    corecore