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Summary

Collecting information on multiple longitudinal outcomes is increasingly common in many clin-

ical settings. In many cases it is desirable to model these outcomes jointly. However, in large

datasets, with many outcomes, computational burden often prevents the simultaneous modelling

of multiple outcomes within a single model. We develop a mean field variational Bayes algorithm,

to jointly model multiple Gaussian, Poisson or binary longitudinal markers within a multivariate

generalised linear mixed model. Through simulation studies and clinical applications (in the fields

of sight threatening diabetic retinopathy and primary biliary cirrhosis) we demonstrate substan-

tial computational savings of our approximate approach when compared to a standard Markov

Chain Monte Carlo, while maintaining good levels of accuracy of model parameters.
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1. Introduction

Since the random-effects models paper of Laird and Ware (1982), mixed models have become a

standard tool for the analysis of longitudinal data in medical studies. The aim is to capture the

evolution over time of a marker of interest. Fixed effects describe the influence of covariates on

the population mean profile, and random effects describe the group-specific deviations from the

population mean.

Mixed models are now so well established that a number of books could introduce the reader

to the basic principles and many extensions of methods for analysing longitudinal data. See for

example Verbeke and Molenberghs (2000) for details of the linear mixed model, mainly focusing

on continuous longitudinal outcomes, or Molenberghs and Verbeke (2005), McCulloch and others

(2008) or Diggle and others (2002) for further details of various extensions including modelling

non-continuous responses with generalised linear mixed models.

Our focus is on the longitudinal analysis of medical data, with measurements of multiple

clinical variables collected repeatedly over time. However, at its most basic level, our problem

is the analysis of grouped data. Such data are commonly found in a wide range of applications,

not limited to medical data, including panel data analysis (Baltagi, 2008), multilevel models

(Gelman and Hill, 2007; Goldstein, 2011) and small area estimation (Rao and Molina, 2015).

Extensions have been developed in many directions. We consider the case where multiple

longitudinal outcomes are observed on each patient in a clinical study. In such studies, both

repeated observations of a marker on the same patient, and observations of different markers on

the same patient are likely to be correlated, and modelling strategies should account for the cor-

relation implied by this hierarchical structure. For example, patients with diabetes will routinely

have their glycated haemoglobin (HbA1c), cholesterol, blood pressure and estimated glomerular

filtration rate (eGFR) measured (along with potentially many other outcomes, including level

of retinopathy collect at retinal screening visits for example), to allow monitoring of a patient’s
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diabetes severity and assessment of the risk of developing additional complications such as sight

threatening diabetic retinopathy.

Many studies that collect longitudinal data on multiple outcomes analyse longitudinal trends

separately using univariate mixed models. Depending on the questions of interest this may be a

legitimate approach. However, by analysing outcomes separately we are unable to describe the

relationship between outcomes or to assess the simultaneous effect of some covariate on a number

of related outcomes. To answer these questions multivariate mixed models can be used.

Verbeke and others (2014) provide a review of various ways of analysing multivariate longi-

tudinal data. Our work in this paper concerns the conditional models in section 3 of their review.

Constructing multivariate mixed models for longitudinal data involves a trade-off between the

information gained in such models and the computational cost of fitting the model. For this

reason, most work on multivariate mixed models only considers the inclusion of a small num-

ber of longitudinal markers (typically 2-5 markers). A notable exception is a pairwise approach

that considers all combinations of bivariate longitudinal models to assess changes over time in

22 hearing threshold frequencies (Fieuws and others , 2007). A key problem is that the inclu-

sion of more longitudinal markers, usually also involves the specification of higher-dimensional

random effects distributions. This makes maximum likelihood estimation challenging due to the

need to evaluate high-dimensional integrals over random effects distributions. Bayesian estima-

tion through Markov Chain Monte Carlo (MCMC) can also be computationally challenging due

to the high-dimensional nature of the problem.

In this paper we propose mean field variational Bayes (MFVB) as an efficient way of fitting

multivariate mixed models. MFVB is widely used in computer science (e.g. Bishop (2006)) though

is perhaps less familiar in the statistical literature. This situation is changing, thanks in part to

two recent reviews of MFVB (Blei and others , 2017) and the related variational message passing

(Wand, 2017).
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In Section 2 we describe multivariate generalised linear mixed models (MGLMMs) and pro-

vide a Bayesian specification of the model of interest in this paper. Section 3 gives a brief overview

of MFVB methods and describes in detail the computations necessary to develop an algorithm

for MFVB estimation of MGLMMs. We assess the performance of our MFVB algorithm in com-

parison to popular MCMC routines, in simulated datasets in Section 4, whilst in Section 5 we

show the performance of our approach in a relatively small dataset of patients with primary

biliary cirrhosis and a much larger dataset of patients with diabetes who were screened for sight

threatening diabetic retinopathy. Section 6 provides a brief conclusion to the article.

2. Multivariate Generalised Linear Mixed Models

2.1 Notation

We begin by first describing the notation used in this paper. We consider a study that collects

data on m individuals. For each patient data is collected on up to R longitudinal markers of

interest. We let yirj denote the jth observation (j = 1, . . . , nir) of the rth marker (r = 1, . . . , R)

for patient i, (i = 1, . . . ,m), and collect all observations of marker r on a particular patient

into a vector yir = (yir1, . . . , yirnir )
T . Further we collect all observations of the R markers on a

particular patient into a combined vector yi = (yT
i1, . . . ,y

T
iR)

T , and let y = (yT
1 , . . . ,y

T
m)T denote

all the longitudinal observations for the study in question. We may specify some covariates that

are believed to influence the change over time in each longitudinal marker. The covariates for

each marker, r, for each individual, i, are stored in a (nir × pr) design matrix Xir . The overall

design matrix for individual i is represented by Xi = blockdiag(Xi1, . . . ,XiR). Similar design

matrices can be constructed for the random effects terms in a mixed model, which are denoted

by the (ni × q) matrix Zi = blockdiag(Zi1, . . . ,ZiR), where q =
∑R

r=1 qr denotes the total

number of random effects included in the model, and ni =
∑R

r=1 nir denotes the total number of

measurements on individual i. These design matrices can be stacked across all individuals, giving
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X = [XT
1 , . . . ,X

T
m]T and Z = blockdiag{Z1, . . . ,Zm}.

2.2 Model specification

We now proceed to develop our MGLMM. We assume that each response, Yr is distributed ac-

cording to a member of the exponential family, to allow the inclusion of non-continuous responses

such as binary and Poisson markers, in addition to continuous markers,

Yr|β,u ∼ exp{yT
r Σ

−1
εr Crν̃r − 1TΣ−1

εr b(Crν̃r)− 1T c(yr, φr)}, (2.1)

where for notational convenience we have defined C = [X Z] and ν̃ = (βT ,uT )T , with β denoting

the p =
∑R

r=1 pr fixed effects in the model, and u denoting the mq vector of individual random

effects. The subscript r attached to any of these design matrices denotes the parts relating to

marker r. We denote by Σε a matrix of nuisance parameters which in our case is a diagonal

matrix with diagonal entries of σ2
εr if the row corresponds to an observation from the rth Gaussian

marker, and 1 if the row corresponds to an observation of a binary or count longitudinal marker.

In equation 2.1 we use b to denote the cumulant function and c to denote the base measure

according to the notation of McCullagh and Nelder (1989), and assume elementwise evaluation

of the functions b and c (i.e. the appropriate function is applied to the appropriate row of input).

For example, if Yr is a continuous marker b(x) = x2/2 whilst if Yr is binary then b(x) = log(1+ex)

and if Poisson, b(x) = ex. To extend this model for our needs in this paper to fit a joint model

to multiple longitudinal responses, we consider the following density for our stacked response Y,

Y|β,u ∼ exp{yTΣ−1
ε Cν̃ − 1TΣ−1

ε b(Cν̃)− 1T c(y, φ)}.

Here we have abused notation slightly for the sake of neat exposition, and understand b(x) and

c(x) to be elementwise application of whichever transformation is appropriate for the type of

outcome corresponding to the row in question. We assume that the random effects terms jointly

follow a multivariate normal distribution with mean 0 and unstructured covariance matrix ΣR.
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That is,

u|ΣR ∼ N(0, Im ⊗ΣR),

with ⊗ denoting a Kronecker product. The remaining terms in our model are;

ΣR|a1, . . . , aq ∼ IW (ν1 + q − 1, 2νdiag{1/a1, . . . , 1/aq}), ak ∼ IG(1/2, A−2
k )

σ2
εr ∼ IG(1/2, a−1

εr ), aεr ∼ IG(1/2, A−2
εr ), β ∼ N(0, σ2

βIp). (2.2)

In (2.2), we specify an Inverse-Wishart prior for the random effects covariance matrix ΣR

and inverse-gamma priors for the residual variances σ2
εr for the Rc continuous markers included

in the MGLMM. The inclusion of auxiliary variables ak (k = 1, . . . , q), and aεr (r = 1, . . . , Rc)

follows the extension of Huang and Wand (2013) in order to place weakly informative priors

on the covariance terms in ΣR that are equivalent to the Half-Cauchy distributions proposed

by Gelman (2006). The choice of ν = 2 allows the standard deviation terms in ΣR to have

Half-t distributions with 2 degrees of freedom, whilst the correlation parameters have uniform

distributions over (−1, 1). Each auxiliary variable is assumed to independently follow an inverse-

gamma distribution as specified in (2.2). A Normal prior with mean 0, and variance σ2
βIp is placed

on the fixed effects parameter β.

We desire posterior distributions on θ = (β,u,ΣR, a1, . . . , aq, σ
2
ε1 , . . . , σ

2
εRc

, aε1 , . . . , aεRc
). As

mentioned in the introduction, one way to proceed would be to use an MCMC sampling routine.

However, as we show in section 5, this can be very computationally intensive in large datasets

that contain data on many longitudinal markers. For this reason, in section 3 we work towards a

mean field variational Bayes solution for fitting MGLMMs in high-dimensional data.

3. Variational Inference

Our aim in Bayesian inference is to find the posterior distribution for the parameters of interest in

a model, described by θ. Mean field variational Bayes aims to provide an approximation to p(θ|y)
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in situations where a full MCMC sampling procedure would be computationally expensive. An

introduction to MFVB from a statistical perspective is given in Ormerod and Wand (2010). The

basic premise is to approximate the complex posterior p(θ|y) (which is challenging to estimate

using MCMC), by a simpler density function q(θ).

3.1 Overview of mean field variational Bayes

MFVB achieves substantial computational gains by enforcing a product restriction

q(θ) =

M
∏

i=1

qi(θi) for some partition {θ1, . . . , θM} of θ.

This restriction is known as the mean field restriction, hence the optimal solution, q∗(θ) (from all

possible distributions Q) is known as the mean field variational Bayes (MFVB) approximation to

the actual posterior distribution p(θ|y). The challenge of MFVB is to select an optimal q∗(θ) that

is as close as possible, in terms of Kullback-Leibler divergence to the true posterior. To justify

this approach, first consider the joint posterior of the parameter vector given the observed data,

p(θ|y) =
p(y, θ)

p(y)
=

p(y|θ)p(θ)

p(y)
.

As explained in Ormerod and Wand (2010), simple algebraic manipulations show that the loga-

rithm of the marginal likelihood satisfies

log p(y) =

∫

q(θ) log

{

p(y, θ)

q(θ)

}

dθ +

∫

q(θ) log

{

q(θ)

p(θ|y)

}

dθ,

= log p(y, q) +KL{q(θ)||p(θ|y)}.

Since a KL divergence is always non-negative, we have that p(y) > p(y, q), and so minimising the

KL divergence (which is often intractable) is equivalent to maximising p(y, q) (which is usually

more tractable). Hence we have that

q∗(θ) = argmin
q∈Q

KL{q(θ)||p(θ|y)} = argmax
q∈Q

p(y, q).
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Under the mean field product restriction, the optimal q-density functions satisfy

q∗i (θi) ∝ exp{E−θi [log p(y, θ)]} ∝ exp{E−θi [log p(θi|rest)]}, (3.3)

with E−θi denoting the expectation with respect to all parameters in the model except for those

in partition θi (referred to as the rest).

MFVB proceeds by determining optimal forms for each partition of θ using (3.3), which will

result in expression that each depend on other partitions of θ. These expressions can be iteratively

updated until there is negligible increase in log p(y, q).

3.2 Mean field variational Bayes for multiple markers

Having given a sketched outline of the key elements of MFVB approximations, we now develop

the MFVB approximation for the MGLMMs described in Section 2. We seek an approximation

to the full posterior as follows.

p(β,u,ΣR, a1, . . . , aq, σ
2
ε1 , . . . , σ

2
εRc

, aε1 , . . . , aεRc
|y),

≈ q(β,u,ΣR, a1, . . . , aq, σ
2
ε1 , . . . , σ

2
εRc

, aε1 , . . . , aεRc
),

= q(β,u, a1, . . . , aq, , aε1 , . . . , aεRc
)q(ΣR, σ

2
ε1 , . . . , σ

2
εRc

),

= q(β,u)q(ΣR)

Rc
∏

r=1

{

q(σ2
εr )q(aεr )

}

q
∏

k=1

q(ak).

Note that the second restrictions are induced simply due to assumed independencies in the

model specified in Section 2, and place no further restriction on the parameter space. That is,

the strength of the MFVB approach depends in this case on the amount of information lost by

the approximation by two factors.

Optimal q-densities can be calculated according to equation (3.3). The updates for q(σ2
εr ),

q(aεr ) and q(ak) involve only relatively standard calculations and result in optimal densities that

are inverse gamma distributions, with arguments according to Algorithm 1. Similarly, q∗(ΣR)

can be shown to be an inverse Wishart distribution. When all of the longitudinal markers are
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continuous, q∗(β,u) is a multivariate normal distribution. However, when at least some of the lon-

gitudinal markers are Poisson or binary, then evaluation of (3.3) no longer leads to a recognisable

distribution. This is caused by the need to evaluate Eq[exp(Cν̃)] and Eq[log(1 + exp(Cν̃))] re-

spectively. To overcome this difficulty, we follow the semiparametric MFVB approach outlined by

Rohde and Wand (2016) and specify that q∗(β,u, µq(β,u)
,Σq(β,u)

) ∼ N(µq(β,u)
,Σq(β,u)

). We still

need to evaluate the logistic term for binary markers. A number of approaches could be taken to

deal with this, either through quadrature, or through the tilted bound of Jaakkola and Jordan

(2000). However, we follow the approach of Nolan and Wand (2017) who use Knowles-Minka-

Wand updates with Monahan-Stefanski updates to approximate the logistic fragment with a

scaled mixture of normal distributions (Knowles and Minka, 2011; Wand, 2014; Monahan and Stefanski,

1989). Full derivations of these optimal q-densities are given in the supplementary material.

The updates for Σq(β,u)
require calculation of the inverse of a potentially large matrix, which

causes a huge computational cost, especially when m is large. However, we can exploit the

block-diagonal structure of Σq(β,u)
and streamline our MFVB algorithm using the approach of

Lee and Wand (2016), in order to substantially improve the computational speed of our algo-

rithm. Further details of the streamlining approach are given in the supplementary material.

The full streamlined MFVB approximation for estimating an MGLMM is given in Algorithm 1.

As noted by Rohde and Wand (2016) and Nolan and Wand (2017), the semiparametric MFVB

algorithm proposed is not guaranteed to converge, although our empirical work suggests this is

not a problem most of the time.

4. Simulation Study

In this section we assess the performance of the MFVB Algorithm 1, through a simulation study.

We are interested in two key measures of performance; the accuracy of the MFVB posterior

distributions when compared to posteriors derived using MCMC, and the speed gains in using
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the MFVB algorithm over the MCMC algorithm.

We designed two simulation scenarios. The first considered three continuous longitudinal

markers according to model (4.4). The second scenario, considered one continuous, one binary

and one Poisson longitudinal marker, according to model 4.5,

Yi,1,j = 0.68− 0.95xi,1,j + ui11 + ui12xi,1,j + ε1, σ2
ε1 = 0.1,

Yi,2,j = −2.50 + 0.12xi,2,j + ui21 + ui22xi,2,j + ε2, σ2
ε2 = 0.25,

Yi,3,j = 0.45 + 1.21xi,3,j + ui31 + ui32xi,3,j + ε3, σ2
ε3 = 0.15,

u ∼ N


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. (4.4)

We assumed m = (100, 1000, 10000) patients and simulated 100 datasets for each sample

size. For each individual patient we simulated between 5 and 10 visits according to a uniform

distribution. At each visit, we simulated the 3 response outcome measurements according to

model (4.4) or (4.5),

Yi,1,j = 0.68− 0.95xi,1,j + ui11 + ui12xi,1,j + ε1,

log(E[Yi,2,j ]) = −2.50 + 0.12xi,2,j + ui21 + ui22xi,2,j ,

logit(E[Yi,3,j ]) = 0.45 + 1.21xi,3,j + ui31 + ui32xi,3,j , (4.5)

with all other simulation details remaining unchanged. For each of the simulated datasets we first

fit a MGLMM using MCMC sampling using the R package mixAK (Komárek and Komárková

(2014)). We simulated 10,000 samples after a burn in of 5000 and thinned by 10. Convergence

of the MCMC samples was assessed by trace plots and autocorrelation functions. We also fit

a MGLMM using our streamlined MFVB algorithm. The stopping criteria for our algorithm

was the relative change in the log lower bound, log p(y, q) falling below 10−7 or a maximum

of 500 iterations. Each simulated dataset was submitted to the University of Liverpool cluster
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computing system, Condor, and the computations were performed on Windows 10 computers

with a 3.4 gigahertz Intel Core i7-6700 processor and 16 gigabytes of random access memory.

4.1 Comparison of accuracy

To compare the accuracy of the MFVB algorithm to the MCMC sample, we calculated the

accuracy score based on the integrated absolute error as proposed by Faes and others (2011).

accuracy(q∗i (θi)) = 100

(

1−
1

2

∫

∞

−∞

|q∗i (θi)− pMCMC(θ|y)|dθ

)

%. (4.6)

We used a kernel density estimate with plug-in bandwidth to estimate pMCMC(θ|y) using the R

package KernSmooth, (Wand and Ripley, 2009).

Figure 1 shows boxplots of the accuracy for each parameter in simulation scenarios 1 and 2,

in the case where there were m = 100 individuals. Similar plots for m = 1000 and m = 10, 000

individuals are shown in the supplementary Figures 1 and 2. When all the markers are continuous,

the MFVB algorithm estimates the posterior distribution with very good accuracy. The fixed

effects are estimated very well, as are the estimates of residual standard deviations, with very

little difference between the MCMC and MFVB posteriors. The random effects covariance matrix

is slightly less accurate, but the MFVB posteriors are still very similar to the MCMC posteriors.

When some of the markers are non-Gaussian, the MFVB estimates are less accurate. The fixed

effects are still generally well estimated although the random effects covariances less so. This is

a well known feature of MFVB algorithms (See for example Luts and Wand (2015)). However,

an inspection of supplementary Figures 3 and 4, which show the posterior density functions for

scenarios 1 and 2 respectively for a single simulated dataset, shows that the means of the posterior

distributions are usually very similar for both the MFVB and MCMC approaches and also that

the true parameter value was usually within MFVB credible intervals. The accuracy of posterior

distribution estimation does not appear to be influenced by sample size very much.
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4.2 Comparison of computational speed

We also quantified the difference in computational time between the MFVB and MCMC ap-

proaches. The average time taken to fit each model in the simulated datasets is shown in Table 1.

The MFVB routine is clearly substantially faster than the MCMC procedure. When all markers

in an MGLMM are continuous, the speed gains are particularly noticeable. For example, in the

model with 10,000 patients, the MCMC model takes more than 6 hours to fit, whilst the MFVB

takes less than 7 minutes. The speed gains are less substantial in these simulations where the

markers are not all continuous, although even in this case, when there are 10,000 patients, the

MCMC model takes over 10.5 hours to fit, whilst the MFVB model fits in just over an hour. The

convergence of the MFVB algorithm is slower when adjustments need to be made for the Poisson

and binary markers.

A comparison of speeds is to some extent subjective. Both approaches to fitting a MGLMM

have different stopping criteria, which we have described at the beginning of this section. We have

used freely available code to estimate our MCMC models. More efficient software could perhaps

be written although, in our testing, the mixAK package was quicker than the more flexible rstan

package for fitting MGLMMs using MCMC (in terms of obtaining the same number of samples

with the same burn-in and thinning settings). We note too that other packages within R, such as

the stan mvmer function in rstanarm Goodrich and others (2018) or the brms package Bürkner

(2017) could fit the models considered in this paper, and bespoke codes may indeed produce

MCMC estimates faster. Nevertheless, our aim in comparing speeds in this paper is to show that

MFVB models are substantially quicker than off-the-shelf software for MCMC.

To summarise our simulation results, we have shown that MFVB algorithms offer substantial

time gains in fitting MGLMMs. These gains needs to be balanced against the reduced accuracy in

some of the posterior distribution estimates, especially when not all of the markers are continuous.

However, depending on which parameters are of interest to the researcher, the MFVB algorithm
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gives estimates of the means of the posterior distributions that are very similar to those obtained

by MCMC, but in a much shorter time frame.

5. Real Data Examples

We now demonstrate the use of the MFVB algorithm to fit MGLMMs in two real data ap-

plications. The first is the well known, but relatively small primary biliary cirrhosis (PBC)

dataset. This data is publicly available within the mixAK package in R (and also in Appendix

D of Fleming and Harrington (1991) and at http://lib.stat.cmu.edu/datasets/pbcseq). It con-

tains measurements of 7 continuous (bilirubin, albumin, alkaline phosphatase, cholesterol, serum

glutamic-oxaloacetic transaminase, platelet count, and prothrombosis time) and 3 binary longi-

tudinal markers (presence of ascites, hepatomegaly and blood vessel malformations (spiders)) on

312 patients.

The second dataset is a much larger dataset coming from the Individualised Screening for

Diabetic Retinopathy (ISDR) Cohort Study at the University of Liverpool. This study col-

lected biomarker information on a number of risk factors for diabetic retinopathy in patients

with diabetes who attended screening programmes in the Merseyside region. For the purposes of

this illustration, we will consider data on 17682 patients, for whom we have repeated measure-

ments of 10 continuous markers (HbA1c (mmol/mol), cholesterol (mmol/L), diastolic blood pres-

sure (mm/Hg), systolic blood pressure (mm/Hg), high-density lipoprotein cholesterol (mmol/L),

low-density lipoprotein cholesterol (mmol/L), eGFR (mL/min/1.73m2), Albumin-Creatinine Ra-

tio (mg/mmol), Triglycerides (mmol/L) and body mass index (kg/m2) and 2 binary markers

(retinopathy gradings in left and right eyes). A patient had a retinopathy grading of 0 if they

were graded R0 (no retinopathy) in the eye being examined, and 1 if they were graded R1 (mild

non-proliferative/background retinopathy). We have not considered any observations where the

gradings showed more serious retinopathy, and so this analysis considers the longitudinal trajec-
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tories before sight threatening diabetic retinopathy is diagnosed. More details on this cohort can

be found in Garćıa-Fiñana and others (2019) and Eleuteri and others (2017). Note that in both

examples not all markers were collected at every time point for each patient. For each contin-

uous marker we considered a model with a random intercept and random slope, and a random

intercept model for each binary marker. In addition, each marker had a fixed intercept and time

slope. The values for the hyperparameters, Aεr , Ak and σ2
β are each set to 10,000 and ν = 2. In

this analysis, all continuous markers except for systolic/diastolic blood pressure, body mass index

and eGFR were log transformed. All continuous markers were then scaled prior to the analysis.

We compared the time taken to fit MGLMMs, and the accuracy of the posterior distributions

for increasing numbers of markers in each dataset. As before we assessed the accuracy using the

integrated absolute error (4.6). All computations were performed on a personal computer with

Windows 10 operating system and a 3.5 gigahertz Intel Xeon E5-1620 processor and 16 gigabyte

of random access memory.

5.1 Primary biliary cirrhosis

We first assessed the MFVB algorithm in the PBC data which is small enough for MCMC

sampling to be computationally feasible, even in the 10 marker model. Our aim was to provide

proof-of-concept in a small dataset where comparison to MCMC was relatively easy, in order

to justify the use of the MFVB algorithm in much larger datasets where MCMC would be

computationally challenging.

Table 2 show the time taken to fit MGLMMs with increasing numbers of markers. In general,

the MFVB approach was substantially faster than MCMC sampling. As more markers were

included in the model, the improvement by using the MFVB approach was even more noticeable.

Notice that even in a relatively small dataset, the full 10-marker MGLMM took around 48

minutes to fit using MCMC, but only 14 seconds using our MFVB algorithm. An example of
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the failure to converge of the MFVB model can be seen in the 8-marker model. Nevertheless,

after 500 iterations, the results, although not technically converged, still gave good accuracy

estimates (results not shown, but are comparable to those presented in the 10-marker model in

Supplementary Figure 5.

In terms of accuracy, we present here the results for the most complicated model with 10

longitudinal markers. Supplementary Figure 5 shows heat maps showing the accuracy for the

model parameters and the implied correlations between longitudinal markers. Only two random

effects variances score lower than 50% accuracy, whilst the majority of parameters are estimated

with good to excellent accuracy, showing that very similar results can be obtained in the 14

seconds required for the MFVB algorithm, and the MCMC sampling that required 48 minutes.

As in the simulation studies, the fixed effects were estimated with very high accuracy.

5.2 Individualised screening for diabetic retinopathy

The diabetic retinopathy application demonstrates the performance of MFVB in a much larger

dataset, and gives a greater indication of the speed gains possible with MFVB. The times in

hours of models with increasing numbers of longitudinal markers are shown in Table 2. The full

12-marker model was fit in less than one hour using MFVB whilst the MCMC fit required more

than 2.5 days. Figure 2 reports the accuracy of this model. Again the fixed effects estimates

are generally very well estimated, and most of the random effects covariance matrix parameters

are reasonably accurately estimated, and clearly in a much shorter time frame than the MCMC

model. The random effects for the two binary intercepts are poorly estimated in this case.

The correlation plot in panel (c) of Figure 2 reveals markers that are highly correlated, and

shows why one may wish to model longitudinal markers simultaneously. We are able to identify

reasonably strong positive correlations between changes over time in a patient’s triglycerides

values and their HbA1c, cholesterol and low-density lipoprotein cholesterol values. We also note
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negative correlations between triglycerides and high-density lipoprotein cholesterol both in terms

of initial value and changes over time.

Figure 3 shows the fitted models for each of the 12 diabetic retinopathy markers for three

patients. There is very little difference between the fitted regression lines obtained by MCMC

and MFVB. Even when accuracy scores (compared to MCMC) are not as high as one might

desire, many of the results extracted from a model fit are almost identical to those that would

be obtained with MCMC. The lower accuracy is largely caused by the known problem of poor

covariance estimation for some parameters.

6. Summary

In this paper we present an approach for fast approximate Bayesian inference for multivariate

longitudinal data. We have described how mean field variational Bayes can be used to obtain fast

accurate results, that are very similar to those obtained by the much slower MCMC routines. Our

paper adds to the growing literature showing that MFVB is a promising avenue for fast inference

in Bayesian models, and demonstrates that this usefulness extends to multivariate generalised

linear mixed models.

We have demonstrated through simulation studies and through application to clinical datasets

that MFVB offers significant time gains over MCMC, although sometimes with the cost of less

accurate estimation of covariance. This could be of use in early exploration of model fits, where

assessing multiple competing models is prohibitive if models take days rather than minutes/hours

to fit. MFVB could also be used to obtain good starting points for MCMC based inference, in an

attempt to speed up MCMC procedures. However, we believe our paper demonstrates that for

many outputs of interest, MFVB provides good estimates in its own right.

Future work should investigate ways to improve the speed of MFVB algorithms further,

without losing accuracy in the estimation of posterior distributions. One possible avenue for
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pursuing this could be through model reparameterization which Tan (2021) shows can improve

both accuracy and speed of convergence.

We have demonstrated our MFVB approach in two clinical datasets. Although the diabetic

retinopathy data consists of data on 12 longitudinal markers for 17682 patients, this number is

potentially small in comparison to the data increasingly available form sources such as electronic

health records, where data may be held on hundreds of thousands of patients, with many more

than 12 longitudinal markers. Although MCMC is slow in the diabetic retinopathy application

(with the 12- marker model taking more than 2.5 days to fit), it is still at least feasible. This

would not be the case in the much larger datasets available through electronic health records.

In this paper we have shown that MFVB can give accurate parameter estimates in much

faster times, which gives confidence that they could do so in settings where MCMC was com-

putationally infeasible. In this case it is desirable to have some indication about how good an

MFVB approximation is. Two promising post-hoc diagnostic tools have been proposed to assess

goodness of fit by Yao and others (2018). The first assesses the goodness of fit of the joint distri-

bution (i.e. how close is q(θ) to the true p(θ|y)), interpreting the shape parameter from Pareto

smoothed importance sampling as the Renyi divergence between q(θ) and p(θ|y), with small di-

vergences indicating good fit. This approach offers the interesting prospect of correcting MFVB

estimates post analysis, and would be a profitable avenue for further research. The second diag-

nostic proposed is a variational simulation based calibration diagnostic that assesses the average

performance of point estimates from an MFVB approximation.

The applications to primary biliary cirrhosis and diabetic retinopathy data in this paper

were for the purposes of illustration. One may also wish to consider the influence of many other

covariates on the longitudinal profiles of various markers. This is perfectly possible within the

algorithm presented in this paper. Similarly, as not all markers are measured at each time point,

there could well be information simply in the fact that a marker was measured. Additional work
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could be done to model this informative observation. This was outside the scope of this paper,

and would be an interesting avenue for future work.

The problem of poorly estimated covariance matrices observed in this paper is a well known

problem with MFVB algorithms. How much of a problem this is depends on what a researcher

wants from a model. If estimates of posterior means are required then MFVB can provide very

good estimates. Equally, if the MGLMM is to be used for prediction or classification, (e.g.

Hughes and others (2018)) then fast and accurate estimate of posterior means may be suffi-

cient. If a more accurate assessment of variability is required, then more work is required. One

promising area we are currently investigating is the use of linear response variational Bayes to

correct MFVB variance estimates (Giordano and others , 2015).

Although we have shown in this article that MFVB can provide a very useful modelling

tool in complex longitudinal models, there is no guarantee that MFVB will always provide a

good solution. Much depends on how much correlation is ignored in the mean field product

restriction. Additionally, Nolan and Wand (2017) show that the amount of posterior correlation

between regression parameters can affect the performance of MFVB. Other features of a problem,

unrelated to MFVB specifically, such as the number of repeated measurements per individual,

and the sample size in general will likely contribute to the quality of a MFVB approximation.

Overall, MFVB offers a fast and useful alternative to MCMC for scalable Bayesian inference

in complex longitudinal data.

7. Software

Software in the form of R code, together with a sample input data set and complete documentation

is available on request from the corresponding author (dmhughes@liverpool.ac.uk). Code to repro-

duce the PBC analysis is available on GitHub at https://github.com/dmhughesLiv/VariationalBayes
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8. Supplementary Material

We provide derivations of our MFVB algorithm for MGLMMs, details of streamlining steps, a

derivation of the lower bound on the marginal log-likelihood, and some additional simulation

results in an online supplement.
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Algorithm 1 Streamlined algorithm for Multivariate Generalised Linear Mixed models.

1: Initialize Mq(Σ−1
R ) a q × q positive definite matrix, µq(1/ak)

> 0, 1 6 k 6 q, µq(1/σ2
εr

) > 0, 1 6

r 6 Rc, and µq(1/σ2
ar

) > 0, 1 6 r 6 Rc

2: Cycle through updates

3: S← 0; s← 0

4: for i = 1, . . . ,m do

5: Gi ← XT
i E[Σ−1

εi ]diag{Ex[b
′′(σx+ µ)]}iZi;

6: Hi ←
{

ZT
i E[Σ−1

εi ]diag{Ex[b
′′(σx+ µ)]}iZi +Mq(Σ−1

R )

}

7: S← S+GiHiG
T
i ; s← s+GiHi

(

Mq(Σ−1
R )µq(ui)

− ZT
i (E[Σ−1

εi ](yi − Ex[b
′(σx + µ)]i))

)

8: Σq(β) ←
(

XTE[Σ−1
ε ]diag{b′′(σx + µ)}X+ σ−2

β Ip − S
)−1

9: µq(β)
← µq(β)

+Σq(β)

{

XTE[Σ−1
εi ](yi − Ex[b

′(σx + µ)]σ−2
β µq(β)

Ip + s
}

; µOLD
q(β)

← µq(β)

10: for i = 1, . . . ,m do

11: Σq(ui) ← Hi +HiG
T
i Σq(β)GiHi

12: µq(ui)
← µq(ui)

+Hi

{

ZT
i E[Σ−1

εi ](yi − Ex[b
′(σx + µ)])−Mq(Σ−1

R )µq(ui)
−GT

i (µq(β)
− µOLD

q(β)
)
}

13: µ← Xµq(β) −







Z1µq(u1)

...
Zmµq(um)






; Ω←

√

1n1
T
8 + σ(s2)T ; σ ← diagonal{XΣq(β)X}

14: for i = 1, . . . ,m do

15: σi ← σi − 2diagonal{Zi(Σq(β)GiHi)
TXT

i }+ diagonal{ZiΣq(ui)Z
T
i }

16: If marker r is Gaussian, Ex[b
′(σx + µ)]r ← µ; Ex[b

′′(σx + µ)]r ← I∑
i nir

17: If marker r is Poisson, Ex[b
′(σx + µ)]r ← Ex[b

′′(σx + µ)]r ← exp
(

µ+ 1
2σ

)

r
;

18: If marker r is binary, Ex[b
′(σx+µ)]r ← Φ

(

µsT

Ω
p
)

; Ex[b
′′(σx+ µ)]r ←

{

φ
(

µsT

Ω

)

/Ω
}

p⊙ s

19: for r = 1, . . . , Rc do

20: Bq(σ2
εr

) ← µq(1/σ2
εr)

+ 1
2

{

||yr −Crµq(βr,ur)||
2 + tr(CT

r CrΣq(βr ,ur))
}

21: µq(1/σ2
εr

) ←
1
2 (

∑m
i=1 nir+1)

Bq(σ2
εr

)
; Bq(aεr )

← µq(1/σ2
εr

) +A−2
εr ; µq(1/aεr )

← 1
µq(1/σ2

εr
)+A−2

εr

22: for k = 1, . . . , q do Bq(ak) ← νMq(Σ−1
R )kk

+A−2
k ; µq(1/ak) ←

1
2 (ν+q)

Bq(ak)

23: Bq(ΣR) ←
∑m

i=1

(

µq(ui)µ
T
q(ui)

+Σq(ui)

)

+ 2νdiag{µq(1/a1), . . . , µq(1/aq)}

24: Mq(Σ−1
R ) ← (ν + q +m− 1)B−1

q(ΣR)

25: until the increase in p(y, q) is negligible
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Fig. 1. Accuracy scores for mean field variational Bayes compared to MCMC for simulated datasets with
3 continuous longitudinal markers (top panel) and 3 types of markers (bottom panel) in the simulation
with m = 100 individuals.

Table 1. Average (standard deviation) computing time in seconds, for MFVB and MCMC ap-
proaches in simulated datasets.

MCMC MFVB Ratio

3 Gaussian markers
m = 100 267.32 (63.97) 3.79 (1.46) 70.49

m = 1000 2029.57 (497.02) 31.28 (11.70) 64.88
m = 10000 23264.57 (5029.08) 400.54 (125.54) 58.08

One Gaussian, Poisson and Bernoulli marker
m = 100 430.26 (167.45) 35.07 (17.35) 12.27

m = 1000 4717.34 (1222.18) 635.45 (225.35) 7.42
m = 10000 38121.47 (15647.86) 4009.55 (2566.41) 9.51
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Fig. 2. Model results for a 12 marker multivariate generalised linear mixed model in the diabetic retinopa-
thy. Panel (a) shows the accuracy heat maps of the MFVB fixed effects estimates and residual standard
deviations (compared to the MCMC estimates), (b) shows the accuracy of the MFVB random effects
covariance matrix (compared to the MCMC estimates), and (c ) shows the implied matrix of correlations
between the 12 longitudinal markers calculated using MFVB.

Table 2. Average computing time for MFVB and MCMC approaches in primary biliary cirrhosis
data (in seconds) and in the diabetic retinopathy data (in hours).

Number of
markers 1 2 3 4 5 6 7 8 9 10 11 12

Primary biliary cirrhosis computation times (in seconds)
MCMC 84.20 134.65 219.19 342.17 483.93 665.26 895.80 1983.25 2409.01 2890.92
MFVB 1.30 2.88 3.14 5.95 6.64 6.55 6.87 27.73 13.73 14.75
Ratio 64.77 46.80 69.74 57.53 72.92 101.58 130.39 71.52 175.43 196.05

Diabetic retinopathy computation times (in hours)
MCMC 1.14 1.71 2.90 4.44 6.41 8.90 11.99 15.84 19.78 24.80 53.22 62.19
MFVB 0.04 0.07 0.12 0.32 0.33 0.47 0.48 0.51 0.64 0.69 0.77 0.92
Ratio 27.56 25.22 24.08 13.66 19.59 18.97 24.89 31.16 30.77 35.68 69.02 67.57
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Fig. 3. Fitted longitudinal markers for mean field variational Bayes (dashed lines) compared to MCMC
(solid lines) for the 12 markers in the diabetic retinopathy data, for 3 patients. The orange stars, green
dots and blue triangles show the observed values for three different patients, with the respectively coloured
lines showing the fitted models for each individual. All continuous values, including time, have been scaled
prior to analysis and the results plotted here are in terms of the scaled variables. The y-axis of each plot
shows the scale version of the variable noted in the title of each panel. The original units for each variable
can be found in the description at the start of Section 5


	Introduction
	Multivariate Generalised Linear Mixed Models
	Notation
	Model specification

	Variational Inference
	Overview of mean field variational Bayes
	Mean field variational Bayes for multiple markers

	Simulation Study
	Comparison of accuracy
	Comparison of computational speed

	Real Data Examples
	Primary biliary cirrhosis
	Individualised screening for diabetic retinopathy

	Summary
	Software
	Supplementary Material

