
1 Introduction

Longitudinal discriminant analysis (LoDA) is a tool used toclassify subjects into
groups based on the evolution over time of some longitudinalvariables. The basic
idea is that information is collected repeatedly over time on some variable(s) (or
marker), that are thought to be indicative of the group to which a subject belongs.
Our particular motivation comes from a medical setting in which we want to use
biomarker information collected over a series of clinic visits to inform classification
of patients into prognostic groups based on their anticipated disease progression.

Over recent years methods of LoDA have developed from using asingle
continuous longitudinal marker in the discriminant analysis (Tomasko, Helms, and
Snapinn, 1999, Brant, Sheng, Morrell, Verbeke, Lesaffre, and Carter, 2003, Kohlmann,
Held, and Grunert, 2009) to allowing several longitudinal continuous markers (Mor-
rell, Brant, Sheng, and Metter, 2012, Marshall, De la Cruz-Mesı́a, Quintana, and
Barón, 2009, Komárek, Hansen, Kuiper, van Buuren, and Lesaffre, 2010). Fur-
ther extensions have allowed LoDA using multiple longitudinal markers of differ-
ent types (Fieuws, Verbeke, Maes, and Van Renterghem, 2008, Hughes, Komárek,
Czanner, and Garcia-Fiñana, 2018b).

The basis for each of these approaches to LoDA is a mixed model. Mod-
els that only consider continuous markers utilise a (multivariate) linear (non-linear)
mixed model to model the longitudinal evolution of the markers over time, whilst
non-continuous markers can be incorporated within a multivariate generalized lin-
ear mixed model (MGLMM). Mixed models are fit to data from patients for whom
we already know the prognostic group to which they belong, with one mixed model
per group. The parameters from these mixed models are used within a discriminant
analysis in order to predict the group membership of new patients.

A key feature of a mixed model is the inclusion of subject-specific random
effects, with a joint distribution specified to incorporatethe correlation between
repeated observations of a single marker and also between observations of multiple
markers for the same individual. A common assumption about the joint distribution
of the random effects is that they follow a normal distribution.

To the best of our knowledge most assessment of the impact of misspec-
ification of random effects has focused on parameter estimation. In the case of
linear mixed models it has been shown that maximum-likelihood estimates are ro-
bust to misspecification of the random effects distribution(Verbeke and Lesaffre,
1997). However, in the case of GLMMs the picture is less clear. A general sum-
mary of findings is that parameter estimates are reasonably robust to random effects
misspecifictation (Neuhaus, Mcculloch, and Boylan, 2011, Marquart and Haynes,
2019) but that in some cases, with a severe departure from normality, incorrect
assumptions about the random effects structure can introduce substantial bias to



parameter estimates (Agresti, Caffo, and Ohman-Strickland, 2004, Litière, Alonso,
and Molenberghs, 2008, Hernández and Giampaoli, 2018)

Some tests have been developed to diagnose and assess the suitability of
random effects modelling assumptions (Zhang and Davidian, 2001, Abad, Litière,
and Molenberghs, 2010, Drikvandi, Verbeke, and Molenberghs, 2017).

In work related to the aim of this paper,Albert (2012) andLiu and Albert
(2014) consider shared random effects and pattern mixture modelsrespectively to
assess the impact of random effects misspecification on classification accuracy for
longitudinal data. Both show that assuming a single multivariate normal distribution
gives area under curve (AUC) values very close to the theoretical optimal AUC of
the true model. Our LoDA procedure is similar to the pattern mixture approach.
However, both of these papers consider only a single longitudinal marker, and do
not consider whether fitting models with alternative randomeffects distributions
would achieve better classification.

In this paper we explore the effect that misspecifying the random effects
distribution has on the classification accuracy when the parameter estimates from
mixed models are used for classification (specifically within a discriminant analysis
model). Accepting that model parameters from a GLMM may be estimated with
bias, we are interested in whether this potential bias affects our ability to classify
patients into clinical groups using methods of LoDA. Secondly we investigate fac-
tors that may affect our ability to accurately estimate a random effects distribution
such as sample size and number of repeated measurements.

Model misspecification may occur in other ways than assumingan incorrect
random effects distribution.Kim and Kong(2016) and Kohlmann et al.(2009)
investigated the consequences of misspecifying the structure of the random effects
by assuming, for example a random intercept model when the true model contains
a random intercept and random slope.De la Cruz, Meza, Arribas-Gil, and Carroll
(2016) investigate the effect of misspecification of the residualerrors and show that
this kind of misspecification can noticably decrease the AUCobtained. The kind of
model misspecification outlined in this paragraph is not thefocus of this paper. We
focus on the case where the distribution of the random effects is misspecified.

All the above referenced investigations into the effects ofrandom effects
misspecification only consider a single longitudinal response. However, in many
clinical settings information about multiple longitudinal markers is collected for
each patient. It is often desirable to use more than one of these markers to inform
clinical decision making. By using multiple markers, we considerably increase
the number of random effects considered (in most cases) and we investigate con-
ditions in which these more complex, and higher-dimensional distributions can be
estimated accurately to improve classification.

The rest of this paper is organised as follows. We first give a brief overview



of the MGLMM used to model multiple longitudinal markers in Section 2. We
explain how the parameter estimates from the MGLMM are used in a discriminant
analysis to allow classification of patients in Section3. We analyse data from a
study of primary biliary cirrhosis, and of hepatocellular carcinoma to explore the
effect of the choice of random-effects distribution in Sections4 and5 respectively.
In Section6 we present the results of a simulation study investigating the effects
of random effects misspecification. We provide some intuition about situations in
which misspecifying random effects distributions may be problematic in Section7
and we conclude with a short summary in Section8.

2 Multivariate generalized linear mixed models

We considerthe collection of data onR ≥ 1 biomarkers at timestr =
(
tr,1, . . . , tr,nr

)
,

tr,1 < · · · < tr,nr < T , r = 1, . . . ,R. Note that each biomarker does not need to be
measured at the same time, and that patients do not necessarily have identical time
schedules. The observations of biomarkerr for a particular patient are denoted by
Yr =

(
Yr,1, . . . ,Yr,nr

)
,r = 1, . . . ,R. The value of each biomarker may further depend

upon additional covariates (those collected at baseline for example), denoted byC .
Our aim in this paper is to use the biomarker data collected until some time

point t < T to predict the status of each patient at timeT . To do so we require some
training data for whom the status atT is known. Specifically, we know the group,
U ∈

{
0, . . . , G−1

}
to which the patient belongs at timeT . A separate MGLMM

is fit to each group, where the expected value of thej’th observation (j = 1, . . . , nr)
of ther’th marker of a patient in groupg (denotedYr, j) is given by

h−1
r

{
E
(
Yr, j

∣∣b,U = g
)}

= xg⊤
r, j αααg

r +zg⊤
r, j br, (1)

whereh−1
r is a chosen link function (for example the logit function forbinomial

responses, log function for Poisson responses and the identity function for Gaussian
response). Covariate information is contained inxg

r, j = xg
r, j(C ) andzg

r, j = zg
r, j(C )

for each prognostic groupg. The vector of regression coefficients to be estimated
are denotedαααg

r , r = 1, . . . ,R, g = 0, . . . , G−1.
Correlations between repeated measurements of a biomarker, and between

values of different biomarkers for a particular patient aremodelled using an unob-
served random effects vectorb =

(
b1, . . . , bR

)
. It is typical to assume that the ran-

dom effects vector jointly follows a normal distribution ineach prognostic group.
An alternative, that allows greater flexibility specifies a weighted mixture ofK nor-
mal distributions, with meanµµµk and covariance matrixDk for the random effects
joint distribution (seeHughes et al.(2018b), Komárek et al.(2010), Komárek and



Komárková(2013) for full details of this model.) Often, due to the complexity of
the multivariate mixed models under consideration, a Markov chain Monte Carlo
(MCMC) scheme is used to estimate the model parameters.

Our challenge in this paper is to investigate whether the choice of distribu-
tion for the random effects influences the accuracy of the classification achieved.
As discussed in the introduction, misspecification of the random effects distribu-
tion does not usually have much effect on the accuracy of the parameter estimates.
However,Komárek et al.(2010) present an example in which using a mixture distri-
bution improves the classification accuracy achieved in comparison to the standard
normal distribution assumption. To investigate how robustclassification approaches
are to misspecification of the random effects distribution,we first describe in Sec-
tion 3 how classifications into prognostic groups are obtained using the MGLMM
parameters in a longitudinal discriminant analysis (LoDA).

3 Longitudinal discriminant analysis

Our aim is to use the model parameters from each MGLMM to classify new pa-
tients given their clinical history. Classification involves first a calculation of the
probability that the patient belongs to a particular groupg, given their longitudinal
data and covariate information. This can be calculated using Bayes’ Theorem

Pg,new =
πg f̂g,new

∑G−1
g̃=0 πg̃ f̂g̃,new

g = 0, . . . , G−1. (2)

where f̂ is a predictive density which assesses the likelihood of theobserved mark-
ers given the group and model parameters. The prior probability of belonging to
groupg are denoted byπg, and is commonly assumed to be the prevalence of the
group in the study population. In a frequentist setting (which covers most of the ref-
erences discussed in the introduction regarding misspecification of random effects
distributions), fg,new is estimated using the maximum likelihood estimates of the
relevant model parameters in groupg. In more complex models such an approach
can be computationally challenging, so in this paper we takea different approach
and estimatefg,new by calculating the mean of the posterior predictive densityesti-
mated for each ofM samples from a MCMC scheme.

Morrell, Brant, and Sheng(2007) propose three different ways of specifying
the predictive densityfg,new, specifically a marginal prediction (which compares
the new patient’s profile to the group specific average profiles computed using the
MGLMMs in each group), a conditional prediction (which estimates a new patient’s
random effects and compares their longitudinal profiles with patients with similar



random effects in each group) and a random effects prediction (which compares the
new patient’s estimated random effects with the mean randomeffects distribution
in each prognostic group). These three methods have been compared previously
(Morrell, Sheng, and Brant, 2011, Komárek et al., 2010, Hughes, El Saeiti, and
Garcı́a-Fiñana, 2018a) and the random effects and marginal approaches have been
seen to be the most promising, so these are the focus of our work in this paper.

The marginal prediction approach calculates the marginal predictive density

f marg
g

(
y1, . . . , yR; ψψψg, θθθ g, C

)
=

∫ R

∏
r=1

nr

∏
j=1

pr
(
yr, j

∣∣b; ψψψg, C
)

f re
g

(
b; θθθ g)db,

where f re
g is the estimated density of the random effects distributionin groupg, and

is given by a weighted sum of normal distributions.

f re
g

(
b; θθθ g)=

Kg

∑
k=1

wg
k ϕ(b; µµµg

k, D
g
k).

Here, Kg = 1 corresponds to the typical assumption of a normal distribution for
the random effects andKg > 1 corresponds to the mixture distributions.ψψψg de-
notes all the fixed effects parameters whilstθθθ g denotes all the parameters related
to the random effects distribution. Once these parameters have been calculated,
the marginal group membership probabilities can be calculated for each sample
from the MCMC procedure and then averaged to give the final probability, using
Equation2. The random effects group membership probabilities can be calculated
similarly, by replacingf marg

g with f re
g in Equation2.

A new patient is classified as belonging to a prognostic groupg, if Pg,new is
greater than a chosen threshold. In the two-group case presented in this paper, the
threshold is chosen using the point closest to the top-left corner of a ROC plot, as
is standard in many classification procedures. Many alternatives are available (see
Hughes, Komárek, Bonnett, Czanner, and Garcı́a-Fiñana(2017) for comparisons of
various options for choosing a threshold).

4 PBC example

To illustrate how choice of distribution for the random effects affects classification
accuracy we present an example based on the Mayo clinic Primary Biliary Cirrhosis
(PBC) dataset (Dickson, Grambsch, Fleming, Fisher, and Langworthy, 1989). This
data is publicly available within themixAK (Komárek and Komárková, 2014) pack-
age inR (R Core Team, 2016) (The data is also available in Appendix D ofFleming
and Harrington(1991) and also electronically at http://lib.stat.cmu.edu/datasets/pbcseq).



The initial study aimed to investigate whether treating patients with D-penicillamine
increased the length of patient survival. Data on a large number of clinical variables
were recorded for 312 patients over a median of 6.3 years per patient.

Komárek et al.(2010) also explored PBC, although using data from the
Dutch Multicenter Primary Biliary Cirrhosis study. They used three continuous
markers, bilirubin, albumin and alkaline phosphotase (allavailable within the Mayo
PBC data) and showed that using a mixture distribution for the random effects with
K = 2, gave a better Area under Curve (AUC) than a single normal distribution.

We present here an application of multivariate LoDA using continuous, bi-
nary and Poisson markers to the Mayo PBC data. We use data collected in the first
2.5 years of follow up to predict whether a patient will die orrequire liver trans-
plant in the following 2.5 years (i.e. within 5 years of theirinitial recruitment to
the trial). There were 253 patients known to be alive two and ahalf years after
recruitment. 51 of these died or required a liver transplantat some point in the
following 2.5 years. We considered three longitudinal markers, log(bilirubin) (a
continuous marker), platelet count (Poisson, counted per cubic ml/1000) and blood
vessel malformation (binary). Log(bilirubin) and platelet count were modelled us-
ing a random intercept and slope. There were an average of 3.53 visits per patient
with bilirubin measured on every visit, and an average of 3.47 measurements of
platelet count, and 3.51 assessments of blood vessel malformations per patient.

The model for the binary blood vessel malformations included a random
intercept and a fixed time slope (largely for the sake of numerical stability). We
considered four potential LoDA classifiers, a model using the typical assumption of
a single normal distribution for the random effects (K = 1), and models using 2, 3
and 4 component mixture distributions for the random effects distribution in each
prognostic group (those who die or require liver transplant(Group 1) and those who
do not (Group 0)).

We compared the fit of the model to the data using penalised expected de-
viance (PED,Plummer(2008)). Lower PED values indicate better model fit. Ta-
ble 1 shows that for the patients who do not die or require a liver transplant a 2-
component mixture distribution for the random effects gives a slightly better model
fit. However, for patients in Group 1, a single normal distribution gives the best
PED. We note that we have consistently seen that models trained on small numbers
of individuals favor simpler models.

Leave one out cross-validation was used to obtain predictions for each of the
253 patients in our sample. The classification accuracy results using the marginal
approach (which was best for the PBC data) are shown in Table1. It is clear that
in a small sample, complex models involvingK = 3,4 mixture components are un-
suitable. There is not much difference between using a single normal distribution
or a two-component mixture with both achieving similar classification results. The



model utilising the typical assumption (K = 1) has a slightly better AUC, indicating
better performance. ROC curves for the 4 models are shown in Supplementary Fig-
ure 1. At the optimal threshold theK = 2 model achieves slightly better sensitivity,
but worse specificity and probability of correct classification (PCC). We conclude
in this application that using a more flexible distribution for the random effects does
not improve classification accuracy.

Table 1: Model performance and prediction accuracy using PBC data for mod-
els with K = 1,2,3,4 mixture components. Sens=Sensitivity, Spec=Specificity,
PCC=Probability of Correct Classification, AUC=Area UnderCurve, PPV = Posi-
tive Predictive Value, NPV = Negative Predictive Value. In this, and all following
tables, the cutoff is the value of the threshold that gave results closest to the top left
corner of the ROC plot. All results are reported at this cutoff value.

Model PED Classification Accuracy
Group 0 Group 1 Cutoff Sens Spec PCC AUC PPV NPV

K = 1 11112.80 2987.29 0.20 0.78 0.82 0.81 0.86 0.53 0.94
K = 2 11021.41 3469.04 0.07 0.82 0.73 0.75 0.84 0.43 0.94
K = 3 11046.15 4439.53 0.01 0.65 0.81 0.78 0.74 0.46 0.90
K = 4 11160.76 4547.39 0.02 0.65 0.62 0.62 0.64 0.30 0.87

5 Hepatocellular carcinoma example

We further demonstrate the influence that choice of random effects distribution has
on classification accuracy in a screening study for hepatocellular carcinoma (HCC).
Our dataset comes from the Ogaki municipal hospital in Japan. The dataset under
consideration in this paper consists of 3333 patients with longitudinal measure-
ments of alpha-fetoprotein (AFP), Des-gamma-carboxy prothrombin (DCP) (mod-
elled as continuous longitudinal markers) and platelet counts (again modelled as a
Poisson longitudinal marker for this application). The measurements were collected
at regular screening visits for the early detection of HCC.

Our dataset consists of 395 patients who develop HCC whilst under obser-
vation and 2938 who did not. Note that some of these patients may have gone on to
develop HCC in the future, but for the purposes of this investigation are considered
as non-HCC patients. Patients had an average of 23.43 clinicvisits, with AFP and
DCP measured at each visit, and an average of 22.52 platelet measurements per
patient. Profile plots of these three markers are shown in Supplementary Figure 3



In this analysis, we log transformed AFP and DCP measurements and con-
sidered a random intercepts and random slopes model with each marker also hav-
ing fixed effects for the age at first screening and gender. SeeHughes, Berhane,
de Groot, Toyoda, Tada, Kumada, Satomura, Nishida, Kudo, Miura, Osaki, Kolamunage-
Dona, Amoros Salvador, Bird, Garcı́a-Fiñana, and Johnson(2020) for further de-
tails of this cohort with a model that only considers longitudinal AFP measure-
ments. We removed 117 pregnant patients for this analysis aspregnancy is known
to influence DCP levels. We considered a dynamic allocation scheme whereby each
clinic visit was considered in turn. If a patient’s risk was over the chosen thresh-
old they were allocated to the HCC group and removed for further investigations.
If the patient’s risk was below the chosen risk their next visit was considered and
their predicted group membership probabilities updated using the additional infor-
mation. This was continued until all visits had been considered or a patient was
classified into the HCC group. So a patient was considered an HCC case ifany of
their predicted risks were above the chosen threshold and a non-HCC case ifnone
of their risks were above the threshold. This scheme is similar to prostate cancer
prediction scheme ofBrant et al.(2003).

Table2 reports the prediction accuracy for each model. The model with a
two-component mixture of multivariate normal distributions gave the best sensitiv-
ity, specificity, PCC, PPV and NPV. The improvement in classification accuracy
is not substantial with more flexible models in this case, although both theK = 2
andK = 4 models achieved slightly better sensitivity and specificity than the model
with the standard single multivariate normal distributionassumption. In the non-
HCC group the models with more flexible random effects distributions achieved
better PED indicating better model fit. For HCC patients, themodel with a two
and three-component mixture of normal distributions achieved better PED than the
standard multivariate normal distribution. However, despite more flexible models
providing better model fit, the improvement in classification accuracy was minimal.

Table 2: Model performance and prediction accuracy using HCC data
(AFP+DCP+Platelet count) for models withK = 1,2,3,4 mixture components.

Model PED Classification Accuracy
Group 0 Group 1 Cutoff Sens Spec PCC AUC PPV NPV

K = 1 621655.4 75135.5 0.18 0.79 0.74 0.75 0.83 0.29 0.96
K = 2 613887.4 74589.1 0.31 0.80 0.76 0.77 0.83 0.31 0.97
K = 3 612935.3 74686.3 0.23 0.79 0.74 0.74 0.82 0.29 0.96
K = 4 612768.6 84098.4 0.12 0.80 0.75 0.76 0.83 0.30 0.96

These results are in contrast to the findings ofKomárek et al.(2010) who



show an improvement in classification when using mixture distributions. This sug-
gests that it is currently unclear what effect random effects misspecification has on
classification accuracy, as with the uncertainty over the impact on parameter es-
timates in GLMMs. To investigate this problem further we conduct a simulation
study in Section6 aiming to determine how robust classification accuracy is toran-
dom effects misspecification.

6 Simulation study

6.1 Simulation Design

We designed a simulation set up similar to that of the PBC datadescribed in Sec-
tion 4, but adjusted where necessary to investigate scenarios where random ef-
fects misspecification might lead to poorer classification results. We considered
two overall sample sizes,n = (250,2500), in each case keeping the prevalence of
Group 1 at 20% to reflect the PBC data. We simulated longitudinal profiles for each
patient for each of the three biomarkers considered in Section 4, log(bilirubin),
platelet count and blood vessel malformations. We simulated four clinic visits per
patient (to roughly correspond to the average of 3.53 per patient in the PBC data)
and each biomarker was measured at each visit. The first visitoccurred att = 0,
and then the remaining visit times were generated from uniform distributions in
the intervals (170,200), (350,390) and (710,770) days, representing approximately
a follow up visit at 6 months, 1 year and 2 years.

We considered a number of simulation scenarios. We first considered the
case where the true distribution of the random effects is a single normal distribution
(the typical assumption) to explore whether using a mixturehad an adverse effect
on the classification accuracy. In this case we used a model fitto the PBC data
(Supplementary Table 1) to provide parameter values for oursimulations

Next we considered 2 and 3-component mixtures as the true random effects
distribution. In each case we considered two scenarios. First we considered a sce-
nario with parameter estimates from models fit to the PBC data(See Table 2 and 4 in
the supplementary material). In these cases the amount of departure from normality
was small and it was not always clear from a visual inspectionthat the “true” distri-
bution was in fact a 2-component mixture. This setup was designed to investigate
the effect of only small departure from normality in the random effects. Secondly
we considered a much more severe departure from normality, where the two groups
had 2 (or 3) component mixture distributions with identically positioned means but
different variances. This meant the only difference between the two groups was the
spread around the component means.



Supplementary Figures 4 and 5 show the shape of the assumed random ef-
fects distributions for the scenarios where a 2-component mixture was considered
the “true” distribution for small and large departures froma single multivariate nor-
mal distribution respectively. Note that the plots give no impression of the correla-
tion between different random effects and are simply shown to give an indication of
the different shapes of random effects in each group and how severe the departure
from normality is. Similar plots for the remaining simulation scenarios are shown
in Figures 6-9 of the supplementary material, where detailsof correlation between
random effects is shown in the respective tables of true parameter values.

Finally we considered the case where the true random effectsdistribution
was a T-distribution with 3 or 5 degrees of freedom, again corresponding to larger
and smaller departures from normality. This led to 7 different simulation scenarios
for each of the two sample sizes. The parameters used for eachsimulation scenario
are presented in Tables 1-5 of the supplementary material.

For the sample size of 250 patients we also considered the effect of changing
the number of visits. We hypothesised that with more data, the random effects could
be estimated more accurately and this may improve classification accuracy. In par-
ticular, for theK = 1,K = 2 with severe departure and T-distribution with 3 degrees
of freedom scenarios, we repeated the simulations but with 9equally spaced visits
instead of 4 (corresponding to follow up approximately every 3 months. The vis-
its were generated from uniform distributions in the intervals (70,110), (160,200),
(250,290), (345,385), (430,470), (520,560), (610,650) and (710,750) days.

For each scenario we applied the LoDA approach with each ofK = 1,2,3,4
models to assess whether more flexible models could better handle random effects
misspecification, and how well theK = 1 model performed even in situations where
the truth was not a single multivariate normal distributionfor the random effects.

For the simulation scenarios with 250 patients, leave one out cross-validation
was used to assess the classification accuracy for each model, whilst for the scenar-
ios with 2500 patients, each simulated dataset was split into 100 training sets of
70% of the patients in each group, and test sets of the remaining 30%, and averaged
the classification accuracy results.

For each scenario we simulated 50 datasets and compared classification ac-
curacy measures, namely AUC, sensitivity, specificity and PCC. In each scenario
MCMC was used to estimate the models with 15,000 MCMC sampleswith a thin-
ning factor of 10 and the first 5000 samples discarded as burn in. We present box-
plots showing the spread of AUC, sensitivity, specificity and PCC to show the vari-
ability across simulated datasets. These methods are computationally intensive,
and 50 simulated datasets for each scenario was thought to bea reasonable balance
between reliability of results, and computational efficiency



6.2 Misspecification of Random Effects

6.2.1 Effect on marginal prediction

Whenthe true random effects distribution in each group was a 2-component mixture
of Gaussians, small departures from normalityshowlittle difference in prediction
accuracy between a theoretically correct model withK = 2 mixture components
and the standard assumption of a single multivariate normaldistribution (Table3
and Supplementary Figure 11). The models withK = 3,4 mixture components
were unstable and did not preform as well as the simpler models, possibly due the
small sample size in relation to the complexity of the model.Increasing the sample
size to 2500 gave an increase in AUC and other accuracy measures.

When the departure from normality was more severe, then Table3 and Sup-
plementary Figure 12 show a consistent improvement by usingthe model with
K = 2 mixture components. This is due to the fact that the two component mix-
ture is able to detect the difference in variability betweenthe two disease groups,
and the locations of the two component means, whereas a single normal distribution
is unable to capture this detail.

Table 3: Prediction accuracy of marginal prediction under the assumption that the
random effects jointly follow a 2-component normal mixturedistribution. Predic-
tion accuracies are reported as the mean over all simulated datasets

Model Cut Sens Spec PCC AUC PPV NPV
Small Departure from Normality Assumption

250

1 0.15 0.87 0.89 0.89 0.94 0.68 0.96
2 0.17 0.88 0.90 0.89 0.95 0.69 0.97
3 0.71 0.80 0.77 0.78 0.82 0.49 0.94
4 0.76 0.80 0.82 0.81 0.85 0.53 0.94

2,500

1 0.12 0.94 0.97 0.96 0.98 0.88 0.99
2 0.17 0.96 0.97 0.97 0.99 0.90 0.99
3 0.30 0.92 0.93 0.93 0.94 0.82 0.98
4 0.46 0.88 0.90 0.90 0.92 0.73 0.97

Large Departure from Normality Assumption

250

1 0.18 0.83 0.87 0.86 0.91 0.62 0.95
2 0.17 0.89 0.92 0.92 0.95 0.75 0.97
3 0.40 0.82 0.81 0.82 0.85 0.55 0.95
4 0.63 0.77 0.72 0.73 0.77 0.42 0.93

2,500

1 0.16 0.87 0.90 0.89 0.94 0.69 0.96
2 0.17 0.92 0.95 0.94 0.98 0.81 0.98
3 0.67 0.86 0.82 0.83 0.88 0.58 0.96
4 0.55 0.81 0.80 0.80 0.84 0.54 0.94

We observed very similar findings when the true random effects distribution



was a 3-component mixture. More flexible models were only a benefit when the
departure from normality was more severe, and the sample size was large (See
Figure1, Supplementary Figure 13 and Supplementary Table 7).

When the underlying random effects distribution was truly anormal distri-
bution, as expected, a single multivariate normal distribution gave the most accurate
prediction accuracy, both in terms of AUC and in terms of optimal sensitivity and
specificity. However, there was very little difference in prediction accuracy or in
the ROC curves if we assumed a 2-component mixture of Gaussians for the ran-
dom effects distribution (See Table 6 and Figure 10 in the supplementary material).
More complicated mixture distributions did not aid the prediction accuracy and pro-
duced less accurate results,muchless stable estimates of sensitivity and specificity
(shown by wider boxplots) for 3 and 4 component mixture models. We suspect this
is largely due to the fact that such a complicated model is unwarranted in a small
group of patients, especially considering that the smallergroup only has 50 patients.
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Figure 1: Receiver Operating Characteristic curves for models with K = 1,2,3,4
mixture components under the assumption that the true random effects distribution
is a three component mixture of normals with large departurefrom normality. The
left panels show ROC curves for each model whilst the right panels show boxplots
of the accuracy measures across 100 simulated datasets.



Finally we considered the case where the random effects followed a t-distribution.
Table 4 shows that when the degrees of freedom of the t-distributionis small,
and hence departure from normality more severe, using a mixture-distribution gave
more accurate predictions. This was specially clear in the case with 2500 patients,
where all three mixture distributions achieved at least a 5%better AUC than as-
suming a single normal distribution (See Supplementary Figure 14). The picture
was less clear as the degrees of freedom was increased. TheK = 2 mixture distri-
bution still performed the best in this scenario but the improvement over the single
multivariate normal distribution was small (Supplementary Figure 15).

Table 4: Prediction accuracy of marginal prediction under the assumption that the
random effects jointly follow a t-distribution with 3 (top two sections) and 5 (bottom
two sections) degrees of freedom.Prediction accuracies are reported as the mean
over all simulated datasets

Size K Cut Sens Spec PCC AUC PPV NPV
3 degrees of freedom

250

1 0.14 0.73 0.74 0.74 0.77 0.46 0.92
2 0.16 0.76 0.77 0.77 0.81 0.46 0.93
3 0.17 0.73 0.75 0.74 0.79 0.44 0.92
4 0.23 0.70 0.70 0.70 0.74 0.39 0.90

2,500

1 0.13 0.73 0.73 0.73 0.74 0.47 0.93
2 0.18 0.76 0.75 0.75 0.79 0.48 0.94
3 0.17 0.77 0.77 0.77 0.83 0.47 0.93
4 0.17 0.74 0.75 0.75 0.80 0.43 0.92

5 degrees of freedom

250

1 0.16 0.81 0.81 0.81 0.86 0.53 0.95
2 0.15 0.81 0.82 0.82 0.87 0.53 0.95
3 0.22 0.78 0.78 0.78 0.83 0.48 0.93
4 0.24 0.77 0.76 0.76 0.81 0.46 0.93

2,500

1 0.16 0.81 0.81 0.81 0.86 0.54 0.95
2 0.19 0.81 0.82 0.81 0.88 0.54 0.95
3 0.17 0.81 0.81 0.81 0.88 0.52 0.94
4 0.20 0.79 0.79 0.79 0.86 0.50 0.94

To summarise our findings for the marginal prediction approach, we have
found that as long as the departure from normality is not large, there is little loss
in assuming a single multivariate normal distribution for the distribution of random
effects in each group. However, we also note that assuming aK = 2 mixture distri-
bution almost always performed comparably and there was no loss in assuming this
slightly more flexible model. We also found this to be the casein simulations not
shown here where the departure from normality was more severe but the location
of the means of mixture components was different between groups. In these cases
a single normal distribution could capture differences between the groups suitably



well to allow accurate classification, even if the estimatesof the random effects
were not accurate. All that was needed for accurate classification was an indication
of which location the new patient was ‘closer’ to.

When the departure from normality was more severe, and therewere differ-
ing variabilities between groups then there was a benefit to assuming more flexible
distributions. Using a 2-component mixture could improve the AUC and lead to
more accurate predictions. However, the improvement was not always substantial.

6.2.2 Effect on Random Effects Prediction

So far, we have focused on the marginal prediction approach since that was found
to be the most accurate for the PBC data. However, (Komárek et al., 2010) show
an example in which random effects prediction gave more accurate classification.
In such a case, where the estimated random effects are actually being used in the
prediction (as opposed to the marginal approach where they are integrated out),
it may be the case that misspecified random effects are more costly in terms of
prediction accuracy, and it would be important to ensure that the random effects
were estimated accurately. One way in which this could be achieved would be to
include more visits per patient, to get a better idea of individual patient trajectories.
We investigated this aspect by considering theK = 1, K = 2 with severe departure
and T-distribution with 3 degrees of freedom simulation scenarios and focused on
the random effects prediction results with either 4 or 9 visits per patient. This 9 visit
schedule was designed to correspond to approximately visits every three months.
The results for the latter two scenarios are shown in Table5, with the results for the
K = 1 true scenario shown in Supplementary Table 8.

In each of the scenarios considered, the dataset with 9 visits per patient
achieved greater classification accuracy of the random effects prediction approach
than the 4 visit dataset. With more visits per patient, a moreaccurate estimate of
the patient specific intercepts and slopes could be obtained. Similarly, having more
patients allowed more accurate classification, again due toimproved accuracy of
random effects estimates. In the example we present here, there is no clear benefit
of using mixture distributions instead of a single normal distribution. However, we
do note again that in the case where the true distribution is a2-component mixture
and in the case of the larger sample size of 2,500 patients, using theK = 2 model
does improve the AUC slightly and the specificity, PCC and PPVnoticeably. Al-
though the benefit in this case is arguable (and clearly not a lot is lost by incorrectly
assuming a single normal distribution for the random effects), this suggests that
there will be cases where with large enough sample sizes and sufficient departure
from normality, using more complex models will allow more accurate prediction.



7 Factors affecting the impact of misspecification of
random effects distributions

We have shown in this paper that in many situations, random effects misspecifica-
tion only has a very small impact on classification accuracy.However, there are
cases where the departure from normality is more severe, andin such cases, failing
to acknowledge this in model building can lead to losses in classification accuracy.
This is consistent with the literature on the impact of random effects misspecific-
tion on parameter estimates referred to in the introduction. It is possible to get
sufficiently accurate estimates of equation2 even when individual fixed effects may
be biased due to random effects misspecification. Conversely in some cases more
flexible modeling of the random effects distribution can lead to more accurate esti-
mate of fg,new and in turn, improved classification accuracy. The amount ofimpact
that misspecification of random effects distributions has on classification is complex
to determine, but we believe is influenced by at least two factors.

1. The distance between the prognostic groups.A key factor is how separated
the two groups of longitudinal profiles are. If the two groupsare well sep-
arated then misspecification of random effects distributions may make little
difference. For example, even if the true random effects distribution was a
3-component mixture in each group, if the groups are well separated, a single
multivariate normal distribution would probably be sufficient to determine
which region of the sample space, a patient belonged to. Eventhough the
wrong random effects distribution had been chosen, equation 2 would be suf-
ficiently well estimated to allow accurate classification. We are not aware of
an automatic way to determine the separability of the groupsa-priori. Plot-
ting of the longitudinal profiles would allow an initial investigation of the
amount of overlap between groups, and provide an indicationabout the likely
usefulness of more flexible random effects distributions.

2. The amount of divergence from normality within a group. If the amount
of divergence from normality within a group is small, then the effect of mis-
specifiying the random effects distribution will be minimal. Estimates of
equation2 will be approximately equal in both models, at least as sample
size increases. Researchers could investigate this by using one of the tests de-
rived for assessing random effects misspecification (Drikvandi et al.(2017)
and references therein). A particular benefit of the Drikvandi et al. test, is
that the use of the gradient function derived byVerbeke and Molenberghs
(2013) could allow the user to assess how severe the misspecification is, by
observing how much greater than 1, the gradient function is.



The impact of misspecification on classification accuracy islikely to be a complex
interplay between these two factors. If the groups are well separated then even if
the within group divergence from normality is large, then accurate classification
could be obtain from misspecified (but simpler) models. Equally, if the separation
between the two groups is small, but the amount of divergencefrom normality is
large, and especially if the divergence is different in eachgroup, then more accu-
rate classificationscouldbe obtained by more flexible models, because the random
effects densities are estimated more accurately.

8 Summary

In this paper we presented extensive simulation results to investigate the effect on
classification accuracy of misspecification of the random effects distribution in lon-
gitudinal discriminant analysis. We have shown that if there is asmall departure
from normality, then assuming a single normal distributionwill not lead to sub-
stantially less accurate classifications. This is consistent with the general findings
mentioned in the introduction. Although some parameters may be estimated with
bias, this does not impact classification much.

In contrast, when the departure from normality is more severe, we have
shown (in agreement withKomárek et al.(2010)) that more accurate classifications
can be obtained by assuming a more flexible random effects distribution.

If more complex models are to be considered, then we have shown that
larger sample sizes must also be available. Since assuming a3-component mixture
distribution substantially increases the number of parameters to be estimated from a
model, then the number of patients must be correspondingly large. In large datasets,
the user has more freedom to consider more complex, flexible distributions for the
random effects in order to guard against misspecifiction. Insmaller datasets, even if
misspecification is suspected, a single multivariate normal distribution may perform
just as well. Similarly, more observations per patient are expected to lead to more
accurate classification when using the random-effects prediction approach.

9 Supporting Information

Supplementary material referenced in Section6, is available online.
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Table 5: Prediction accuracy of random-effect prediction with differing number
of visits and different sample sizes under the assumption that the random effects
jointly follow a 2-component multivariate normal distribution with a high degree of
departure from normality (top panel) and a t-distribution with 3 degrees of freedom
(bottom panel).Prediction accuracies are reported as the mean over all simulated
datasets

Scenario K Cut Sens Spec PCC AUC PPV NPV
2-component multivariate normal distribution

N = 250
4 Visits

1 0.45 0.66 0.74 0.73 0.67 0.46 0.89
2 0.15 0.46 0.82 0.74 0.62 0.48 0.86
3 0.07 0.56 0.73 0.70 0.65 0.37 0.87
4 0.07 0.50 0.70 0.66 0.60 0.33 0.85

N = 250
9 Visits

1 0.24 0.75 0.79 0.78 0.79 0.53 0.92
2 0.29 0.61 0.82 0.77 0.71 0.50 0.89
3 0.22 0.60 0.75 0.72 0.67 0.41 0.88
4 0.19 0.55 0.66 0.64 0.59 0.32 0.85

N = 2,500
4 Visits

1 0.01 0.71 0.87 0.84 0.83 0.61 0.92
2 0.07 0.69 0.93 0.88 0.84 0.76 0.93
3 0.03 0.43 0.75 0.69 0.60 0.68 0.85
4 0.08 0.30 0.86 0.75 0.58 0.55 0.83

t-distribution with 3 degrees of freedom.

N = 250
4 Visits

1 0.21 0.75 0.75 0.75 0.80 0.44 0.92
2 0.30 0.73 0.74 0.74 0.78 0.42 0.92
3 0.49 0.68 0.69 0.69 0.71 0.37 0.89
4 0.48 0.63 0.60 0.61 0.59 0.31 0.86

N = 250
9 Visits

1 0.19 0.76 0.76 0.76 0.81 0.44 0.93
2 0.23 0.75 0.75 0.76 0.81 0.45 0.92
3 0.48 0.72 0.70 0.70 0.74 0.39 0.91
4 0.44 0.61 0.64 0.63 0.61 0.32 0.87

N = 2,500
4 Visits

1 0.14 0.77 0.76 0.76 0.83 0.45 0.93
2 0.17 0.76 0.77 0.76 0.82 0.45 0.93
3 0.31 0.75 0.75 0.75 0.81 0.43 0.92
4 0.57 0.70 0.69 0.69 0.73 0.37 0.90
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