1 Introduction

Longitudinal discriminant analysis (LoDA) is a tool useddassify subjects into
groups based on the evolution over time of some longitudiaaibles. The basic
idea is that information is collected repeatedly over timesome variable(s) (or
marker), that are thought to be indicative of the group tochla subject belongs.
Our particular motivation comes from a medical setting inckhwve want to use
biomarker information collected over a series of clinidtgi$o inform classification
of patients into prognostic groups based on their antieghdisease progression.

Over recent years methods of LODA have developed from usisigpgle
continuous longitudinal marker in the discriminant aneyf$omasko, Helms, and
Snapinn1999 Brant, Sheng, Morrell, Verbeke, Lesaffre, and Cai2003 Kohlmann,
Held, and Gruner2009 to allowing several longitudinal continuous markevi-
rell, Brant, Sheng, and Mette2012 Marshall, De la Cruz-Mesia, Quintana, and
Baron 2009 Komarek, Hansen, Kuiper, van Buuren, and Lesaf2@10. Fur-
ther extensions have allowed LoDA using multiple longitnadimarkers of differ-
ent types Fieuws, Verbeke, Maes, and Van Rentergh2608 Hughes, Komarek,
Czanner, and Garcia-Finarz018h).

The basis for each of these approaches to LoDA is a mixed mddied-
els that only consider continuous markers utilise a (maitate) linear (non-linear)
mixed model to model the longitudinal evolution of the maskever time, whilst
non-continuous markers can be incorporated within a narittte generalized lin-
ear mixed model (MGLMM). Mixed models are fit to data from patis for whom
we already know the prognostic group to which they belon¢h) whe mixed model
per group. The parameters from these mixed models are usieid widiscriminant
analysis in order to predict the group membership of newep&ti

A key feature of a mixed model is the inclusion of subjectesiierandom
effects, with a joint distribution specified to incorporadke correlation between
repeated observations of a single marker and also betwesemaidions of multiple
markers for the same individual. A common assumption albeujitint distribution
of the random effects is that they follow a normal distribuati

To the best of our knowledge most assessment of the impacissipet-
ification of random effects has focused on parameter esbmatin the case of
linear mixed models it has been shown that maximum-lik@destimates are ro-
bust to misspecification of the random effects distribufiderbeke and Lesaffre
1997. However, in the case of GLMMs the picture is less clear. Aegal sum-
mary of findings is that parameter estimates are reasonallist to random effects
misspecifictationleuhaus, Mcculloch, and BoylaB011, Marquart and Haynes
2019 but that in some cases, with a severe departure from ndgmalcorrect
assumptions about the random effects structure can inteodubstantial bias to



parameter estimatedgresti, Caffo, and Ohman-Stricklan2l004 Litiere, Alonso,
and Molenbergh2008 Hernandez and Giampap#018

Some tests have been developed to diagnose and assesstdbéityuof
random effects modelling assumptio@éng and Davidiar2001, Abad, Litiere,
and Molenbergh201Q Drikvandi, Verbeke, and Molenbergi&017).

In work related to the aim of this papeXlbert (2012 andLiu and Albert
(2014 consider shared random effects and pattern mixture moesggectively to
assess the impact of random effects misspecification osifitagion accuracy for
longitudinal data. Both show that assuming a single muitaa normal distribution
gives area under curve (AUC) values very close to the thigateiptimal AUC of
the true model. Our LoDA procedure is similar to the pattern mixtuppr@ach.
However, both of these papers consider only a single lodiigh marker, and do
not consider whether fitting models with alternative randeifiects distributions
would achieve better classification.

In this paper we explore the effect that misspecifying thedoan effects
distribution has on the classification accuracy when tharpater estimates from
mixed models are used for classification (specifically wigndiscriminant analysis
model). Accepting that model parameters from a GLMM may kamedged with
bias, we are interested in whether this potential bias &ffear ability to classify
patients into clinical groups using methods of LoDA. Sedgnek investigate fac-
tors that may affect our ability to accurately estimate aloan effects distribution
such as sample size and number of repeated measurements.

Model misspecification may occur in other ways than assuamigcorrect
random effects distributionKim and Kong (2016 and Kohlmann et al.(2009
investigated the consequences of misspecifying the stieicf the random effects
by assuming, for example a random intercept model when tigenrodel contains
a random intercept and random slofe la Cruz, Meza, Arribas-Gil, and Carroll
(2016 investigate the effect of misspecification of the residerabrs and show that
this kind of misspecification can noticably decrease the AbGined. The kind of
model misspecification outlined in this paragraph is noffitlees of this paper. We
focus on the case where the distribution of the random efisanisspecified.

All the above referenced investigations into the effectsasidom effects
misspecification only consider a single longitudinal resgg However, in many
clinical settings information about multiple longitudimaarkers is collected for
each patient. It is often desirable to use more than one setherkers to inform
clinical decision making. By using multiple markers, we swmierably increase
the number of random effects considered (in most cases) andwestigate con-
ditions in which these more complex, and higher-dimendidisdributions can be
estimated accurately to improve classification.

The rest of this paper is organised as follows. We first givaef bverview



of the MGLMM used to model multiple longitudinal markers iecion2. We
explain how the parameter estimates from the MGLMM are useddiscriminant
analysis to allow classification of patients in SectbhnWe analyse data from a
study of primary biliary cirrhosis, and of hepatocellularcnoma to explore the
effect of the choice of random-effects distribution in $@ts$4 and5 respectively.
In Section6 we present the results of a simulation study investigatiegeffects
of random effects misspecification. We provide some irdgnitibout situations in
which misspecifying random effects distributions may bebpematic in Sectio?
and we conclude with a short summary in Secton

2 Multivariate generalized linear mixed models

We considethe collection of data oR > 1 biomarkers at timels = (tr71, e, tr,nr),
1< - <tpn <T,r=1...,R Note that each biomarker does not need to be
measured at the same time, and that patients do not ne¢gbsar identical time
schedules. The observations of biomankéor a particular patient are denoted by
Y, = (Ynl, ...,Yr,nr),r =1,...,R The value of each biomarker may further depend
upon additional covariates (those collected at baselineXample), denoted by’
Our aim in this paper is to use the biomarker data collectédisome time
pointt < T to predict the status of each patient at timelo do so we require some
training data for whom the status&tis known. Specifically, we know the group,
Ue {O, o, G— 1} to which the patient belongs at timfe A separate MGLMM
is fit to each group, where the expected value ofjttiteobservation{=1, ..., n;)
of ther’th marker of a patient in groug (denotedy; ;) is given by

h(l{E(Ym- b,U :g)} =x¢ a9 +2% by, 1)

whereh ! is a chosen link function (for example the logit function fiinomial
responses, log function for Poisson responses and thetydemiction for Gaussian
response). Covariate information is containeddn = x7;(¢) andz?; = 2/, (%)

for each prognostic groug. The vector of regression coefficients to be estimated
are denotedr?, r=1,..., R g=0,...,G—1.

Correlations between repeated measurements of a biomarieebetween
values of different biomarkers for a particular patient medelled using an unob-
served random effects vector= (bl, ey bR). It is typical to assume that the ran-
dom effects vector jointly follows a normal distribution @ach prognostic group.
An alternative, that allows greater flexibility specifies @ighted mixture oK nor-
mal distributions, with meap, and covariance matri®y for the random effects
joint distribution (seeHughes et al(20181, Komarek et al(2010, Komarek and



Komarkova(2013 for full details of this model.) Often, due to the complegxitf
the multivariate mixed models under consideration, a Marttwain Monte Carlo
(MCMC) scheme is used to estimate the model parameters.

Our challenge in this paper is to investigate whether thecehaf distribu-
tion for the random effects influences the accuracy of thesdiaation achieved.
As discussed in the introduction, misspecification of thedmam effects distribu-
tion does not usually have much effect on the accuracy of éinerpeter estimates.
However,Komarek et al(2010 present an example in which using a mixture distri-
bution improves the classification accuracy achieved inganmson to the standard
normal distribution assumption. To investigate how rololessification approaches
are to misspecification of the random effects distributiwe first describe in Sec-
tion 3 how classifications into prognostic groups are obtainedgugie MGLMM
parameters in a longitudinal discriminant analysis (LoDA)

3 Longitudinal discriminant analysis

Our aim is to use the model parameters from each MGLMM to dlasgew pa-
tients given their clinical history. Classification invel first a calculation of the
probability that the patient belongs to a particular grgugiven their longitudinal
data and covariate information. This can be calculatedyuBayes’ Theorem

f
N —— L g=0,...,G-1 2)
%50 TG fgnew

wheref is a predictive density which assesses the likelihood obtieerved mark-
ers given the group and model parameters. The prior pratyabfl belonging to
groupg are denoted byg, and is commonly assumed to be the prevalence of the
group in the study population. In a frequentist setting @ltgovers most of the ref-
erences discussed in the introduction regarding misspatdn of random effects
distributions), fg new is estimated using the maximum likelihood estimates of the
relevant model parameters in grogpln more complex models such an approach
can be computationally challenging, so in this paper we talldferent approach
and estimatég new by calculating the mean of the posterior predictive deresty-
mated for each ol samples from a MCMC scheme.

Morrell, Brant, and Shen®007) propose three different ways of specifying
the predictive densityfgnew, Specifically a marginal prediction (which compares
the new patient’s profile to the group specific average psotitemputed using the
MGLMMs in each group), a conditional prediction (which esdites a new patient’s
random effects and compares their longitudinal profile$ \patients with similar



random effects in each group) and a random effects prediftrthich compares the
new patient’s estimated random effects with the mean raneffasts distribution
in each prognostic group). These three methods have beepatedpreviously
(Morrell, Sheng, and Brap2011 Komarek et al.201Q Hughes, El Saeiti, and
Garcia-Finang2018g and the random effects and marginal approaches have been
seen to be the most promising, so these are the focus of olrimtis paper.

The marginal prediction approach calculates the margiraliptive density

R nr
fg@9(ya, ...,y §°, 89, %) =/|'L|'|1 pr (ye,j | b; @9, %) £8(b; 69) db,
r=1|=

where fgre is the estimated density of the random effects distributiggroupg, and
is given by a weighted sum of normal distributions.

K9
(0 0%) = 3w b . ).

=1
Here, K9 = 1 corresponds to the typical assumption of a normal didiohufor
the random effects anid? > 1 corresponds to the mixture distributiong® de-
notes all the fixed effects parameters wh#8tdenotes all the parameters related
to the random effects distribution. Once these paramet@rs heen calculated,
the marginal group membership probabilities can be caledlfor each sample
from the MCMC procedure and then averaged to give the findbadsdity, using
Equation2. The random effects group membership probabilities carahmilated
similarly, by replacingfg™ ® with f{®in Equation2.

A new patient s classified as belonging to a prognostic gmufpZg new is
greater than a chosen threshold. In the two-group caserpieesim this paper, the
threshold is chosen using the point closest to the top-tefier of a ROC plot, as
is standard in many classification procedures. Many alteesare available (see
Hughes, Komarek, Bonnett, Czanner, and Garcia-Fi{i20b7) for comparisons of
various options for choosing a threshold).

4 PBC example

To illustrate how choice of distribution for the random etfeaffects classification
accuracy we present an example based on the Mayo clinic BrBilgary Cirrhosis
(PBC) datasetickson, Grambsch, Fleming, Fisher, and Langworfl889. This

data is publicly available within theixAK (Komarek and Komarkoy2014) pack-

age ink (R Core Team2016 (The data is also available in Appendix DieiEming

and Harringtor{1991) and also electronically at http://lib.stat.cmu.eduddats/pbcseq).



The initial study aimed to investigate whether treatinggres with D-penicillamine
increased the length of patient survival. Data on a largelarmof clinical variables
were recorded for 312 patients over a median of 6.3 yearsgi@mp.

Komarek et al. (2010 also explored PBC, although using data from the
Dutch Multicenter Primary Biliary Cirrhosis study. Theyeadasthree continuous
markers, bilirubin, albumin and alkaline phosphotasegiailable within the Mayo
PBC data) and showed that using a mixture distribution ferimdom effects with
K = 2, gave a better Area under Curve (AUC) than a single norns#iiliition.

We present here an application of multivariate LoDA usingtowious, bi-
nary and Poisson markers to the Mayo PBC data. We use da¢zteallin the first
2.5 years of follow up to predict whether a patient will dierequire liver trans-
plant in the following 2.5 years (i.e. within 5 years of thaiitial recruitment to
the trial). There were 253 patients known to be alive two anhléa years after
recruitment. 51 of these died or required a liver transpéirgome point in the
following 2.5 years. We considered three longitudinal neask log(bilirubin) (a
continuous marker), platelet count (Poisson, countedydgicenl/1000) and blood
vessel malformation (binary). Log(bilirubin) and plateteunt were modelled us-
ing a random intercept and slope. There were an average ®V&is per patient
with bilirubin measured on every visit, and an average o¥ 3kasurements of
platelet count, and 3.51 assessments of blood vessel malfimns per patient.

The model for the binary blood vessel malformations inctbiderandom
intercept and a fixed time slope (largely for the sake of niraéstability). We
considered four potential LODA classifiers, a model usirgtypical assumption of
a single normal distribution for the random effedts=€ 1), and models using 2, 3
and 4 component mixture distributions for the random effelistribution in each
prognostic group (those who die or require liver transp{@mbup 1) and those who
do not (Group 0)).

We compared the fit of the model to the data using penalisedoteg de-
viance (PEDPlummer(2008). Lower PED values indicate better model fit. Ta-
ble 1 shows that for the patients who do not die or require a livangplant a 2-
component mixture distribution for the random effects gigeslightly better model
fit. However, for patients in Group 1, a single normal disitibn gives the best
PED. We note that we have consistently seen that modelgtrain small numbers
of individuals favor simpler models.

Leave one out cross-validation was used to obtain predisfior each of the
253 patients in our sample. The classification accuracyiteessing the marginal
approach (which was best for the PBC data) are shown in Tableis clear that
in a small sample, complex models involvikg= 3,4 mixture components are un-
suitable. There is not much difference between using aeingimal distribution
or a two-component mixture with both achieving similar siéisation results. The



model utilising the typical assumptioK & 1) has a slightly better AUC, indicating
better performance. ROC curves for the 4 models are showappl&mentary Fig-
ure 1. At the optimal threshold th€ = 2 model achieves slightly better sensitivity,
but worse specificity and probability of correct classificat(PCC). We conclude
in this application that using a more flexible distribution fhe random effects does
not improve classification accuracy.

Table 1: Model performance and prediction accuracy using ElBta for mod-
els with K = 1,2 3,4 mixture components. Sens=Sensitivity, Spec=Specificity
PCC=Probability of Correct Classification, AUC=Area Un@rmrve, PPV = Posi-
tive Predictive Value, NPV = Negative Predictive Value. st and all following
tables, the cutoff is the value of the threshold that gavelteslosest to the top left
corner of the ROC plot. All results are reported at this dutafue.

Model PED Classification Accuracy

Group 0 Group 1 Cutoff Sens Spec PCC AUC PPV NPV
11112.80 2987.29| 0.20 0.78 0.82 0.81 0.86 0.53 0.94
11021.41 3469.04| 0.07 082 0.73 0.75 0.84 043 094
11046.15 4439.53 0.01 065 081 0.78 0.74 0.46 0.90
11160.76 4547.39 0.02 0.65 0.62 0.62 0.64 0.30 0.87
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5 Hepatocellular carcinoma example

We further demonstrate the influence that choice of randdectsfdistribution has
on classification accuracy in a screening study for hep#tdaecarcinoma (HCC).
Our dataset comes from the Ogaki municipal hospital in Japae dataset under
consideration in this paper consists of 3333 patients vatigitudinal measure-
ments of alpha-fetoprotein (AFP), Des-gamma-carboxyhpoohbin (DCP) (mod-
elled as continuous longitudinal markers) and platelent®(again modelled as a
Poisson longitudinal marker for this application). The sweaments were collected
at regular screening visits for the early detection of HCC.

Our dataset consists of 395 patients who develop HCC whidéuobser-
vation and 2938 who did not. Note that some of these patieayshave gone on to
develop HCC in the future, but for the purposes of this ingegion are considered
as non-HCC patients. Patients had an average of 23.43 ¢lsiis, with AFP and
DCP measured at each visit, and an average of 22.52 platelssurements per
patient. Profile plots of these three markers are shown iplSogentary Figure 3



In this analysis, we log transformed AFP and DCP measuresvaartt con-
sidered a random intercepts and random slopes model withreadker also hav-
ing fixed effects for the age at first screening and gender. Hagges, Berhane,
de Groot, Toyoda, Tada, Kumada, Satomura, Nishida, KudoraMOsaki, Kolamunage-
Dona, Amoros Salvador, Bird, Garcia-Fifana, and Johi(8080 for further de-
tails of this cohort with a model that only considers londihal AFP measure-
ments. We removed 117 pregnant patients for this analysegmancy is known
to influence DCP levels. We considered a dynamic allocatbemme whereby each
clinic visit was considered in turn. If a patient’s risk wageo the chosen thresh-
old they were allocated to the HCC group and removed for &urihvestigations.
If the patient’s risk was below the chosen risk their nexttwgs considered and
their predicted group membership probabilities updateagushe additional infor-
mation. This was continued until all visits had been conmgdeor a patient was
classified into the HCC group. So a patient was consideredG@D ehse ifany of
their predicted risks were above the chosen threshold ameth-dICC case ihone
of their risks were above the threshold. This scheme is amhil prostate cancer
prediction scheme drant et al.(2003.

Table2 reports the prediction accuracy for each model. The modil avi
two-component mixture of multivariate normal distributgogave the best sensitiv-
ity, specificity, PCC, PPV and NPV. The improvement in clasaiion accuracy
is not substantial with more flexible models in this casdyalgh both th&k = 2
andK = 4 models achieved slightly better sensitivity and spetyfitian the model
with the standard single multivariate normal distributessumption. In the non-
HCC group the models with more flexible random effects distions achieved
better PED indicating better model fit. For HCC patients, ifiedel with a two
and three-component mixture of normal distributions actdebetter PED than the
standard multivariate normal distribution. However, desmore flexible models
providing better model fit, the improvement in classificatawcuracy was minimal.

Table 2: Model performance and prediction accuracy usingCHGata
(AFP+DCP+Platelet count) for models with= 1,2, 3,4 mixture components.

Model PED Classification Accuracy
Group 0 Group 1 Cutoff Sens Spec PCC AUC PPV NPV

K=1 | 621655.4 75135.% 0.18 0.79 0.74 0.75 0.83 0.29 0.96
K=2 | 613887.4 74589.1] 0.31 080 0.76 0.77 0.83 0.31 0.97
K=3 | 612935.3 74686.3 0.23 0.79 0.74 0.74 082 0.29 0.96
K=4 | 612768.6 84098.4| 0.12 0.80 0.75 0.76 0.83 0.30 0.96

These results are in contrast to the finding&Kofmarek et al(2010 who



show an improvement in classification when using mixturériistions. This sug-
gests that it is currently unclear what effect random ef#feaisspecification has on
classification accuracy, as with the uncertainty over thpaioh on parameter es-
timates in GLMMs. To investigate this problem further we doat a simulation
study in Sectiord aiming to determine how robust classification accuracy rame
dom effects misspecification.

6 Simulation study

6.1 Simulation Design

We designed a simulation set up similar to that of the PBC deszribed in Sec-
tion 4, but adjusted where necessary to investigate scenarioeewhedom ef-
fects misspecification might lead to poorer classificatiesutts. We considered
two overall sample sizes, = (250,2500), in each case keeping the prevalence of
Group 1 at 20% to reflect the PBC data. We simulated longitlgirofiles for each
patient for each of the three biomarkers considered in &eéti log(bilirubin),
platelet count and blood vessel malformations. We simdl&dar clinic visits per
patient (to roughly correspond to the average of 3.53 peemiain the PBC data)
and each biomarker was measured at each visit. The firstogsitrred at = 0,
and then the remaining visit times were generated from wmifdistributions in
the intervals (170,200), (350,390) and (710,770) daysessmting approximately
a follow up visit at 6 months, 1 year and 2 years.

We considered a number of simulation scenarios. We firstidered the
case where the true distribution of the random effects iaglsinormal distribution
(the typical assumption) to explore whether using a mixhaé an adverse effect
on the classification accuracy. In this case we used a model fite PBC data
(Supplementary Table 1) to provide parameter values fosmaulations

Next we considered 2 and 3-component mixtures as the traeonaeffects
distribution. In each case we considered two scenariost Wi considered a sce-
nario with parameter estimates from models fit to the PBC (&#a Table 2 and 4 in
the supplementary material). In these cases the amounpaftdee from normality
was small and it was not always clear from a visual inspedhanthe “true” distri-
bution was in fact a 2-component mixture. This setup wasgtkesl to investigate
the effect of only small departure from normality in the randeffects. Secondly
we considered a much more severe departure from normahgterxthe two groups
had 2 (or 3) component mixture distributions with identigglositioned means but
different variances. This meant the only difference betwtbe two groups was the
spread around the component means.



Supplementary igures 4 and 5 show the shape of the assumed random ef-
fects distributions for the scenarios where a 2-componextiune was considered
the “true” distribution for small and large departures frarsingle multivariate nor-
mal distribution respectively. Note that the plots give mpression of the correla-
tion between different random effects and are simply shawgivte an indication of
the different shapes of random effects in each group and koers the departure
from normality is. Similar plots for the remaining simulati scenarios are shown
in Figures 6-9 of the supplementary material, where detditorrelation between
random effects is shown in the respective tables of truenpeter values.

Finally we considered the case where the true random eftestigsbution
was a T-distribution with 3 or 5 degrees of freedom, agaimesponding to larger
and smaller departures from normality. This led to 7 difféi@mulation scenarios
for each of the two sample sizes. The parameters used forsgadhation scenario
are presented in Tables 1-5 of the supplementary material.

For the sample size of 250 patients we also considered thet effchanging
the number of visits. We hypothesised that with more dat,ahdom effects could
be estimated more accurately and this may improve clagstircaccuracy. In par-
ticular, for theK = 1, K = 2 with severe departure and T-distribution with 3 degrees
of freedom scenarios, we repeated the simulations but wétpu@lly spaced visits
instead of 4 (corresponding to follow up approximately gv@months. The vis-
its were generated from uniform distributions in the intdsv(70,110), (160,200),
(250,290), (345,385), (430,470), (520,560), (610,65@) @10,750) days.

For each scenario we applied the LoDA approach with ea¢h-efl, 2, 3,4
models to assess whether more flexible models could bettelldneandom effects
misspecification, and how well thé= 1 model performed even in situations where
the truth was not a single multivariate normal distributionthe random effects.

For the simulation scenarios with 250 patients, leave oherogs-validation
was used to assess the classification accuracy for each yagnllst for the scenar-
ios with 2500 patients, each simulated dataset was sptitifD training sets of
70% of the patients in each group, and test sets of the rengg®i%, and averaged
the classification accuracy results.

For each scenario we simulated 50 datasets and comparsdicé®n ac-
curacy measures, namely AUC, sensitivity, specificity a@CPIn each scenario
MCMC was used to estimate the models with 15,000 MCMC sampiiesa thin-
ning factor of 10 and the first 5000 samples discarded as buitVé present box-
plots showing the spread of AUC, sensitivity, specificitgd&CC to show the vari-
ability across simulated datasets. These methods are ¢atigmally intensive,
and 50 simulated datasets for each scenario was though&todasonable balance
between reliability of results, and computational efficgn



6.2 Misspecification of Random Effects
6.2.1 Effect on marginal prediction

Whenthe true random effects distribution in each group was aripament mixture
of Gaussians, small departarieom normalityshowlittle difference in prediction
accuracy between a theoretically correct model With- 2 mixture components
and the standard assumption of a single multivariate nodisalibution (Table3
and Supplementary Figure 11). The models wdth= 3,4 mixture components
were unstable and did not preform as well as the simpler rspgeksibly due the
small sample size in relation to the complexity of the mottedreasing the sample
size to 2500 gave an increase in AUC and other accuracy nesasur

When the departure from normality was more severe, thereBadohd Sup-
plementary Figure 12 show a consistent improvement by usgiagmodel with
K = 2 mixture components. This is due to the fact that the two aormept mix-
ture is able to detect the difference in variability betwdles two disease groups,
and the locations of the two component means, whereas @&siaghal distribution
is unable to capture this detail.

Table 3: Prediction accuracy of marginal prediction untierassumption that the
random effects jointly follow a 2-component normal mixtualistribution. Predic-
tion accuracies are reported as the mean over all simulatedets

Model | Cut Sens Spec PCC AUC PPV NPV
Small Departure from Normality Assumption
0.15 0.87 0.89 0.89 094 0.68 0.96
0.17 0.88 090 0.89 095 0.69 0.97
0.71 080 0.77 0.78 0.82 049 0.94
0.76 0.80 0.82 081 0.85 0.53 0.94
0.12 094 097 096 098 0.88 0.99
0.17 096 0.97 097 0.99 0.90 0.99
0.30 0.92 093 093 094 082 0.98
0.46 0.88 090 090 092 0.73 0.97
Large Departure from Normality Assumption
0.18 0.83 0.87 086 091 0.62 0.95
0.17 089 092 092 095 0.75 0.97
0.40 082 0.81 082 0.85 055 0.95
0.63 0.77 0.72 0.73 0.77 042 0.93
0.16 0.87 090 0.89 094 0.69 0.96
0.17 092 095 094 098 081 0.98
0.67 0.86 0.82 0.83 0.88 058 0.96
0.55 0.81 0.80 0.80 0.84 054 0.94
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We observed very similar findings when the true random effdisttribution



was a 3-component mixture. More flexible models were only rrebewhen the
departure from normality was more severe, and the sampéeveis large (See
Figurel, Supplementary Figure 13 and Supplementary Table 7).

When the underlying random effects distribution was trutyoamal distri-
bution, as expected, a single multivariate normal distiilvugave the most accurate
prediction accuracy, both in terms of AUC and in terms of it sensitivity and
specificity. However, there was very little difference ire@iction accuracy or in
the ROC curves if we assumed a 2-component mixture of Gaxs$ia the ran-
dom effects distribution (See Table 6 and Figure 10 in th@kupentary material).
More complicated mixture distributions did not aid the pegidn accuracy and pro-
duced less accurate results,ichless stable estimates of sensitivity and specificity
(shown by wider boxplots) for 3 and 4 component mixture medéle suspect this
is largely due to the fact that such a complicated model isanramted in a small
group of patients, especially considering that the smgheup only has 50 patients.
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Figure 1. Receiver Operating Characteristic curves foremdithK = 1,2 3,4
mixture components under the assumption that the true rardiects distribution
is a three component mixture of normals with large depaffior@ normality. The
left panels show ROC curves for each model whilst the righepmashow boxplots
of the accuracy measures across 100 simulated datasets.



Finally we considered the case where the random effectsiel a t-distribution.

Table 4 shows that when the degrees of freedom of the t-distribusosmall,

and hence departure from normality more severe, using ainekdistribution gave
more accurate predictions. This was specially clear in #se avith 2500 patients,
where all three mixture distributions achieved at least alil&er AUC than as-
suming a single normal distribution (See Supplementaryieid4). The picture
was less clear as the degrees of freedom was increase& FHi&mixture distri-
bution still performed the best in this scenario but the ioement over the single
multivariate normal distribution was small (Supplemeyntaigure 15).

Table 4: Prediction accuracy of marginal prediction untierassumption that the
random effects jointly follow a t-distribution with 3 (top/b sections) and 5 (bottom
two sections) degrees of freedorarediction accuracies are reported as the mean
over all simulated datasets

Size K Cut Sens Spec PCC AUC PPV NPV
3 degrees of freedom
0.14 0.73 0.74 0.74 0.77 0.46 0.92
0.16 0.76 0.77 0.77 0.81 0.46 0.93
0.17 0.73 0.75 0.74 0.79 0.44 0.92
0.23 0.70 0.70 0.70 0.74 0.39 0.90
0.13 0.73 0.73 0.73 0.74 0.47 0.93
0.18 0.76 0.75 0.75 0.79 0.48 0.94
0.17 0.77 0.77 0.77 0.83 0.47 0.93
0.17 0.74 0.75 0.75 0.80 0.43 0.92
5 degrees of freedom
0.16 0.81 0.81 0.81 0.86 0.53 0.95
0.15 0.81 0.82 0.82 0.87 053 0.95
0.22 0.78 0.78 0.78 0.83 0.48 0.93
0.24 0.77 0.76 0.76 0.81 0.46 0.93
0.16 0.81 0.81 0.81 0.86 0.54 0.95
0.19 0.81 0.82 0.81 0.88 0.54 0.95
0.17 0.81 081 0.81 0.88 0.52 0.94
0.20 0.79 0.79 0.79 0.86 0.50 0.94

250

2,500

A OWONRERPAPWONPRE

250

2,500

A OWONRERPAPWONPRE

To summarise our findings for the marginal prediction apphoave have
found that as long as the departure from normality is noteatigere is little loss
in assuming a single multivariate normal distribution toe tistribution of random
effects in each group. However, we also note that assumihg-2 mixture distri-
bution almost always performed comparably and there wasswih assuming this
slightly more flexible model. We also found this to be the dasgmulations not
shown here where the departure from normality was more sdwuérthe location
of the means of mixture components was different betweeunpgoln these cases
a single normal distribution could capture differencesveein the groups suitably



well to allow accurate classification, even if the estimaieshe random effects
were not accurate. All that was needed for accurate clasgdicwas an indication
of which location the new patient was ‘closer’ to.

When the departure from normality was more severe, and there differ-
ing variabilities between groups then there was a benefggaraing more flexible
distributions. Using a 2-component mixture could improwe AUC and lead to
more accurate predictions. However, the improvement waahnays substantial.

6.2.2 Effect on Random Effects Prediction

So far, we have focused on the marginal prediction approacike shat was found
to be the most accurate for the PBC data. Howevan{arek et al.2010 show
an example in which random effects prediction gave morerateclassification.
In such a case, where the estimated random effects are lgdtealg used in the
prediction (as opposed to the marginal approach where treeyngegrated out),
it may be the case that misspecified random effects are maitéy ¢o terms of
prediction accuracy, and it would be important to ensur¢ tina random effects
were estimated accurately. One way in which this could bésael would be to
include more visits per patient, to get a better idea of iigdial patient trajectories.
We investigated this aspect by considering khe: 1, K = 2 with severe departure
and T-distribution with 3 degrees of freedom simulationnsg@s and focused on
the random effects prediction results with either 4 or 9tsiger patient. This 9 visit
schedule was designed to correspond to approximatelys\@siry three months.
The results for the latter two scenarios are shown in Taphgth the results for the
K =1 true scenario shown in Supplementary Table 8.

In each of the scenarios considered, the dataset with %\psit patient
achieved greater classification accuracy of the randonatsffgediction approach
than the 4 visit dataset. With more visits per patient, a nam@irate estimate of
the patient specific intercepts and slopes could be obtaBiedlarly, having more
patients allowed more accurate classification, again dumpooved accuracy of
random effects estimates. In the example we present here, ifino clear benefit
of using mixture distributions instead of a single normatdlbution. However, we
do note again that in the case where the true distributior2i€@mponent mixture
and in the case of the larger sample size of 2,500 patientyg tlee K = 2 model
does improve the AUC slightly and the specificity, PCC and P®BYceably. Al-
though the benefit in this case is arguable (and clearly raitia lost by incorrectly
assuming a single normal distribution for the random effgdhis suggests that
there will be cases where with large enough sample sizeswfidient departure
from normality, using more complex models will allow morecacate prediction.



7 Factors affecting the impact of misspecification of
random effects distributions

We have shown in this paper that in many situations, randdectsfmisspecifica-
tion only has a very small impact on classification accurddgwever, there are
cases where the departure from normality is more severanath cases, failing
to acknowledge this in model building can lead to lossesassification accuracy.
This is consistent with the literature on the impact of randeffects misspecific-
tion on parameter estimates referred to in the introductitinis possible to get
sufficiently accurate estimates of equatibeven when individual fixed effects may
be biased due to random effects misspecification. Conyensslome cases more
flexible modeling of the random effects distribution cardiéamore accurate esti-
mate offg ney @and in turn, improved classification accuracy. The amounnpfct
that misspecification of random effects distributions haslassification is complex
to determine, but we believe is influenced by at least twafact

1. The distance between the prognostic group® key factor is how separated
the two groups of longitudinal profiles are. If the two growwe well sep-
arated then misspecification of random effects distrimgimay make little
difference. For example, even if the true random effectwidigion was a
3-component mixture in each group, if the groups are weklhsstpd, a single
multivariate normal distribution would probably be suféict to determine
which region of the sample space, a patient belonged to. Ewargh the
wrong random effects distribution had been chosen, equatiwould be suf-
ficiently well estimated to allow accurate classificatione #e not aware of
an automatic way to determine the separability of the graipsgori. Plot-
ting of the longitudinal profiles would allow an initial ingggation of the
amount of overlap between groups, and provide an indicatiaut the likely
usefulness of more flexible random effects distributions.

2. The amount of divergence from normality within a group. If the amount
of divergence from normality within a group is small, thee #ffect of mis-
specifiying the random effects distribution will be minimaEstimates of
equation2 will be approximately equal in both models, at least as sampl
size increases. Researchers could investigate this by asmof the tests de-
rived for assessing random effects misspecificationk{/andi et al.(2017)
and references therein). A particular benefit of the Drikiiaet al. test, is
that the use of the gradient function derived W@rbeke and Molenberghs
(2013 could allow the user to assess how severe the misspeaficiati by
observing how much greater than 1, the gradient function is.



The impact of misspecification on classification accuradikedy to be a complex
interplay between these two factors. If the groups are veglhsated ten even if

the within group divergence from normality is large, therwate classification
could be obtain from misspecified (but simpler) models. Hyguidthe separation
between the two groups is small, but the amount of divergé&ore normality is
large, and especially if the divergence is different in egdup, then more accu-
rate classificationsouldbe obtained by more flexible models, because the random
effects densities are estimdtaore accurately.

8 Summary

In this paper we presented extensive simulation resultsviestigate the effect on
classification accuracy of misspecification of the randai@cts$ distribution in lon-
gitudinal discriminant analysis. We have shown that if ¢hisrasmall departure
from normality, then assuming a single normal distributwafi not lead to sub-
stantially less accurate classifications. This is consistéth the general findings
mentioned in the introduction. Although some parameterg beaestimated with
bias, this does not impact classification much.

In contrast, when the departure from normality is more svere have
shown (in agreement witkomarek et al(2010) that more accurate classifications
can be obtained by assuming a more flexible random effedtsbdison.

If more complex models are to be considered, then we have rsliloat
larger sample sizes must also be available. Since assun3fupaponent mixture
distribution substantially increases the number of pataraé¢o be estimated from a
model, then the number of patients must be correspondiagie! In large datasets,
the user has more freedom to consider more complex, flexistgkulitions for the
random effects in order to guard against misspecifictiosmaller datasets, even if
misspecification is suspected, a single multivariate nbdisé&ribution may perform
just as well. Similarly, more observations per patient aqgeeted to lead to more
accurate classification when using the random-effectsgired approach.

9 Supporting Information

Supplementary material referenced in Sectpis available online.



References

Abad, A. A., S. Litiere, and G. Molenberghs (2010): “Testiior misspecification
in generalized linear mixed model&fostatistics, 11, 771-786.

Agresti, A., B. Caffo, and P. Ohman-Strickland (2004): “Bxaes in which mis-
specification of a random effects distribution reduces iefficy, and possible
remedies,’Computational Satistics & Data Analysis, 47, 639-653.

Albert, P. S. (2012): “A linear mixed model for predicting aéry event from
longitudinal data under random effects misspecificati@gtistics in medicine,
31, 143-154.

Brant, L. J., S. L. Sheng, C. H. Morrell, G. N. Verbeke, E. lfeeaand H. B. Carter
(2003): “Screening for prostate cancer by using randometsfmodels,Journal
of the Royal Satistical Society, Series A, 166, 51-62.

Dela Cruz, R., C. Meza, A. Arribas-Gil, and R. J. Carroll (BR1'Bayesian regres-
sion analysis of data with random effects covariates fromlinear longitudinal
measurementsJournal of multivariate analysis, 143, 94-106.

Dickson, E. R., P. M. Grambsch, T. R. Fleming, L. D. Fished an Langworthy
(1989): “Prognosis in primary biliary cirrhosis: model fdecision making,”
Hepatology, 10, 1-7.

Drikvandi, R., G. Verbeke, and G. Molenberghs (2017): “Diaging misspecifica-
tion of the random-effects distribution in mixed modeBibpmetrics, 73, 63—71.

Fieuws, S., G. Verbeke, B. Maes, and Y. Van Renterghem (20P8&dicting renal
graft failure using multivariate longitudinal profile®iostatistics, 9, 419-431.

Fleming, T. R. and D. P. Harrington (199ounting processes and survival anal-
ysis, volume 169, John Wiley & Sons.

Hernandez, F. and V. Giampaoli (2018): “The impact of méxsfied random effect
distribution in a weibull regression mixed modeHats, 1, 48—76.

Hughes, D. M., S. Berhane, C. E. de Groot, H. Toyoda, T. Tad&umada,
S. Satomura, N. Nishida, M. Kudo, T. Miura, Y. Osaki, R. Kolamge-Dona,
R. Amoros Salvador, T. Bird, M. Garcia-Fifiana, and P. $ohn(2020): “Serum
levels of alpha fetoprotein increase more than 10 yeargéeletection of hepa-
tocellular carcinoma,Clinical Gastroenterology and Hepatology, In Press.

Hughes, D. M., R. El Saeiti, and M. Garcia-Fifana (20184).comparison of
group prediction approaches in longitudinal discriminamalysis,”Biometrical
Journal, 60, 307-322.

Hughes, D. M., A. Komarek, L. J. Bonnett, G. Czanner, and Mrd&a-Fiflana
(2017): “Dynamic classification using credible intervaldongitudinal discrim-
inant analysis, Satisticsin medicine, 36, 3858-3874.

Hughes, D. M., A. Komarek, G. Czanner, and M. Garcia-F&g018b): “Dy-
namic longitudinal discriminant analysis using multipp@dgitudinal markers of



different types,"Satistical methodsin medical research, 27, 2060—2080.

Kim, Y. and L. Kong (2016): “Classification using longitudintrajectory of
biomarker in the presence of detection limit§atistical methods in medical
research, 25, 458—-471.

Kohlmann, M., L. Held, and V. P. Grunert (2009): “Classifioatof therapy resis-
tance based on longitudinal biomarker profileéBidmetrical Journal, 51, 610—
626.

Komarek, A., B. E. Hansen, E. M. Kuiper, H. R. van Buuren, &d_esaffre
(2010): “Discriminant analysis using a multivariate lineaixed model with a
normal mixture in the random effects distributioifatistics in Medicine, 29,
3267-3283.

Komarek, A. and L. Komarkova (2013): “Clustering for rtivhriate continuous
and discrete longitudinal datalhe Annals of Applied Statistics, 7, 177—-200.

Komarek, A. and L. Komarkova (2014): “Capabilities of Ragkage
mixAK for clustering based on multivariate continuous andscrete
longitudinal data,” Journal of Satistical Software, 59, 1-38, URL
http://www.jstatsoft.org/v69/i12/.

Litiere, S., A. Alonso, and G. Molenberghs (2008): “The eapof a misspecified
random-effects distribution on the estimation and thegrerbince of inferential
procedures in generalized linear mixed modedsgtisticsin Medicine, 27, 3125—
3144,

Liu, D. and P. S. Albert (2014): “Combination of longitudin@omarkers in pre-
dicting binary events,Biostatistics, 15, 706—718.

Marquart, L. and M. Haynes (2019): “Misspecification of nmakbdal random-
effect distributions in logistic mixed models for panel ey data,”Journal of
the Royal Satistical Society: Series A (Satisticsin Society), 182, 305-321.

Marshall, G., R. De la Cruz-Mesia, F. A. Quintana, and A. Br@ (2009): “Dis-
criminant analysis for longitudinal data with multiple ¢omuous responses and
possibly missing dataBiometrics, 65, 69-80.

Morrell, C. H., L. J. Brant, and S. Sheng (2007): “Comparipgmaches for pre-
dicting prostate cancer from longitudinal data,2007 Proceedings of the Amer-
ican Satistical Association, Biometrics Section, Alexandria: American Statisti-
cal Association, 127-133.

Morrell, C. H., L. J. Brant, S. Sheng, and E. J. Metter (2013creening for
prostate cancer using multivariate mixed-effects motelsyrnal of Applied
Satistics, 39, 1151-1175.

Morrell, C. H., S. L. Sheng, and L. J. Brant (2011): “A compgam study of ap-
proaches for predicting prostate cancer from longitudiiad,” Communi cations
in Satistics-Smulation and Computation, 40, 1494-1513.

Neuhaus, J., C. Mcculloch, and R. Boylan (2011): “A note quetyi error under


http://www.jstatsoft.org/v59/i12/

random effects misspecification in generalized linear chim@dels,”Biometrics,
67, 654-656.

Plummer, M. (2008): “Penalized loss functions for bayestasdel comparison,”
Biostatistics.

R Core Team (2016):R: A Language and Environment for Satistical Com-
puting, R Foundation for Statistical Computing, Vienna, AustridRL
http://www.R-project.org/.

Tomasko, L., R. W. Helms, and S. M. Snapinn (1999): “A disenamt analysis
extension to mixed modelsRatisticsin Medicine, 18, 1249-1260.

Verbeke, G. and E. Lesaffre (1997): “The effect of misspeéeg the random-
effects distribution in linear mixed models for longitudlmata,”Computational
Satistics & Data Analysis, 23, 541-556.

Verbeke, G. and G. Molenberghs (2013): “The gradient fuumcéis an exploratory
goodness-of-fit assessment of the random-effects disitsibin mixed models,”
Biostatistics, 14, 477-490.

Zhang, D. and M. Davidian (2001): “Linear mixed models witkxible distribu-
tions of random effects for longitudinal dat&lometrics, 57, 795-802.


http://www.R-project.org/

Table 5: Prediction accuracy of random-effect predictiathwdiffering number

of visits and different sample sizes under the assumptianttie random effects
jointly follow a 2-component multivariate normal distritoon with a high degree of
departure from normality (top panel) and a t-distributiathv@ degrees of freedom
(bottom panel).Prediction accuracies are reported as the mean over allatau
datasets

Scenario| K \ Cut Sens Spec PCC AUC PPV NPV
2-component multivariate normal distribution
1|/045 066 0.74 0.73 0.67 0.46 0.89
N=250|2 | 0.15 0.46 0.82 0.74 062 0.48 0.86
4 Visits | 3 | 0.07 0.56 0.73 0.70 0.65 0.37 0.87
4 |0.07 050 0.70 0.66 0.60 0.33 0.85
1/024 075 079 0.78 0.79 0.53 0.92
N=250|2 | 029 0.61 0.82 0.77 071 0.50 0.89
9Visits | 3 | 0.22 0.60 0.75 0.72 0.67 0.41 0.88
41019 055 066 0.64 059 0.32 0.85
1/001 071 087 084 0.83 0.61 0.92
N=2,500(2 | 0.07 0.69 0.93 0.88 0.84 0.76 0.93
4Visits |3 1 0.03 043 0.75 0.69 060 0.68 0.85
4 /008 030 086 0.75 058 0.55 0.83
t-distribution with 3 degrees of freedom.
1021 075 075 0.75 0.80 0.44 0.92
N=25012 | 030 0.73 0.74 0.74 0.78 0.42 0.92
4Visits | 3 1 0.49 068 0.69 069 0.71 0.37 0.89
4 /048 063 0.60 0.61 059 0.31 0.86
1/019 0.76 0.76 0.76 0.81 0.44 0.93
N=25012 | 023 075 0.75 0.76 0.81 045 0.92
9Visits |3 | 0.48 0.72 0.70 0.70 0.74 0.39 0.91
4 /044 061 064 063 061 032 0.87
1/014 0.77 076 0.76 0.83 0.45 0.93
N=25002 | 0.17 0.76 0.77 0.76 0.82 0.45 0.93
4Visits |3 /0.31 0.75 075 0.75 0.81 0.43 0.92
4 /057 070 0.69 0.69 0.73 0.37 0.90
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