35 research outputs found

    Impedance spectroscopy models for the complete characterization of thermoelectric materials

    Get PDF
    This paper analyses the use of impedance spectroscopy as a characterization tool applied to thermoelectric materials. The impedance function of the thermoelectric system under adiabatic conditions and Peltier mode operation is calculated by solving the heat equation in the frequency domain. The analysis, focused on the complex plane, provides the required equivalent circuit elements to interpret the impedance measurements. Using this approach, all the relevant thermoelectric parameters and thermal properties can be potentially extracted at a given temperature from the impedance spectra, i.e., the Seebeck coefficient, electrical resistivity, thermal conductivity, figure of merit (zT), specific heat, and thermal diffusivity. This can be done without the need of measuring temperature differences. To validate the models described, impedance measurements have been carried out in single thermoelectric elements and modules, showing an excellent agreement with the theory. The simple nature of the measurements in conjunction with the advantage of obtaining all the important thermoelectric parameters opens up the possibility of establishing impedance spectroscopy as a very useful characterization method for the thermoelectric field

    Low frequency impedance spectroscopy analysis of thermoelectric modules

    Get PDF
    Impedance spectroscopy is a well-established technique for the study of semiconductors and energy-related devices. However, in the area of thermoelectrics (TEs), this technique is not frequently used and there is a lack of a physical background for a proper interpretation of the results. Usually, in the low frequency regime, the impedance spectrum of TE modules working in cooling mode is characterized by a semicircle which can be modelled as a parallel connection of a resistor and a capacitor. Here, we present a theoretical analysis to understand the origin of both parameters in bulk TE modules working as Peltier coolers. The analysis introduces a thermoelectric capacitance and a thermoelectric resistance that are defined by the temperature, the Seebeck coefficient and the thermal properties of the module (specific heat and thermal conductivity, respectively). The product of both provides a time constant that directly relates to the thermal diffusivity. Our analysis provides a theoretical model able to interpret the low frequency results and obtain relevant thermal parameters from a single impedance measurement

    Multifunctional probes for high-throughput measurement of Seebeck coefficient and electrical conductivity at room temperature

    Get PDF
    An apparatus capable of rapid measurement of the Seebeck coefficient and electrical resistivity at room temperature is reported. The novel aspect of this apparatus is the use of 4 multifunctional probes that comprise a junction of two conductors at the tip and serve as both thermocouples and electrical contacts. In addition, one of the probes has a built-in heater that can establish a temperature gradient in the sample for the Seebeck measurement. The technique does not require special sample geometries or preparation of contacts and is suitable for bulk and thin film materials. Together with automated sample stage and data acquisition, the equipment is able to measure both the Seebeck coefficient and electrical resistivity in less than 20 s with good accuracy. Less than 5% and 4% relative errors were found for the measurement of the Seebeck coefficient and electrical resistivity, respectively. This makes the apparatus especially useful for high throughput evaluation of thermoelectric materials

    Evaluation of thermoelectric generators by I-V curves

    Get PDF
    A recent theoretical study proposes a new way to evaluate thermoelectric devices by measuring two I–V curves—one obtained under a constant temperature difference and the other obtained for a constant thermal input. We report an experimental demonstration of the feasibility of this novel technique. A measurement system was designed and constructed, which enables both types of I–V curves to be obtained automatically. The effective ZT values of a thermoelectric module were determined using this system and compared with those measured by an impedance spectroscopy technique. The results confirm the validity of the proposed technique. In addition, the capability of measuring ZT under a large temperature difference was also investigated. The results show that the ZTs obtained for a large temperature difference are significantly smaller than those for a small temperature difference, providing insights into the design and operation of thermoelectric modules in realistic applications

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Preparation and characterisation of contacts for high temperature thermoelectric modules

    No full text
    In this paper we report the use of high temperature solder alloys that allow the fabrication of high temperature thermoelectric modules. As an initial approach, well-known Bi2Te3 thermocouples were fabricated using a 301 °C melting point solder alloy. Secondly, junctions of promising thermoelectric materials for high temperatures were prepared employing a 715 °C solder. The properties of the junctions are evaluated and the experimental procedure to obtain the contacts is described, providing a methodology for the fabrication of high-temperature thermoelectric modules

    Correlation between volume change and cell voltage variation with composition for lithium intercalated amorphous films

    No full text
    Interactions between the intercalant and the host have been studied in homogeneous amorphous LixWO3 prepared by electron beam evaporation, using electrochemical experiments with films of different thickness (100−400 nm). We have related the intercalation thermodynamics, described previously by us [Solid State Ionics 2005, 176, 1701] with other models that take into account film volume dilatation along the intercalation. A distinct behavior of cell voltage variation with composition and volume change is observed for the thinnest (100 nm) films:  cell voltage follows ideal insertion thermodynamics and no deformation was detected using profilometry techniques. In contrast, thicker films exhibited both volume changes and, correspondingly, cell voltage departs from ideality due to contributions to the chemical potential arising from elastic distortions of the host matrix
    corecore