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This paper analyses the use of impedance spectroscopy as a characterization tool applied to

thermoelectric materials. The impedance function of the thermoelectric system under adiabatic

conditions and Peltier mode operation is calculated by solving the heat equation in the frequency

domain. The analysis, focused on the complex plane, provides the required equivalent circuit

elements to interpret the impedance measurements. Using this approach, all the relevant

thermoelectric parameters and thermal properties can be potentially extracted at a given

temperature from the impedance spectra, i.e., the Seebeck coefficient, electrical resistivity, thermal

conductivity, figure of merit (zT), specific heat, and thermal diffusivity. This can be done without

the need of measuring temperature differences. To validate the models described, impedance

measurements have been carried out in single thermoelectric elements and modules, showing an

excellent agreement with the theory. The simple nature of the measurements in conjunction with

the advantage of obtaining all the important thermoelectric parameters opens up the possibility of

establishing impedance spectroscopy as a very useful characterization method for the

thermoelectric field. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4901213]

I. INTRODUCTION

Electrical impedance spectroscopy (IS) is a characteriza-

tion technique widely used in several fields of research (pho-

tovoltaics,1,2 fuel cells,3 supercapacitors,4 corrosion,5 etc.).

The main advantage of this method over other characteriza-

tion tools resides in the ability to separate the electronic

related processes occurring in the device. This is achieved by

measuring the impedance response of the system when a

small amplitude ac signal (either voltage or current) oscil-

lates around a certain steady state value. The response is

monitored as a function of frequency and hence, rapid proc-

esses show up at high frequencies, while slow processes only

appear at low frequencies.

The characterization of thermoelectric (TE) materials

requires determining the variation with temperature of 3 pa-

rameters: Seebeck coefficient (S), electrical conductivity

(r), and thermal conductivity (k). In addition, the figure of

merit z, which is given by the combination of the previous

parameters (z¼ S2r/k), is usually given as information

about the efficiency of the material. Currently, despite of

the extended number of homemade techniques that exist in

the literature,6,7 there is not a widely used standard appara-

tus able to measure all the TE properties. On the other

hand, frequently the characterization of the materials

involves the use of up to 3 different pieces of equipment.

Especially, the thermal conductivity is difficult to measure

and requires very expensive apparatus. Under this scenario,

it is worthwhile looking at developing new methods and

characterization techniques. Due to the successful applica-

tion of IS in other fields, it stands as a reliable technique,

and powerful apparatus are available from different manu-

factures in the market, so it appears interesting to explore

its application in the TE area.

On this respect, some efforts have been made in the past

mainly from two research groups. Hogan et al. first reported

IS measurements of TE elements and modules and proposed

the use of RC one-port and thermal transmission line models

to analyze the impedance results.8 On the other hand, De

Marchi et al. have published several articles9,10 analyzing

the heat balance equation in the context of thermal imped-

ance to improve the accuracy in the determination of zT
(where T is the absolute temperature). However, although

the possibility of using the IS technique to extract all TE

properties have been pointed out by both groups, the detailed

approaches and experimental verification have not been

explored. To date, the attention has mostly focused on

obtaining the figure of merit. A search through recent litera-

ture only turned up two papers using IS to evaluate the figure

of merit.11,12

In this work, we focus on the development of suitable

equivalent circuit elements for the interpretation of imped-

ance results and on exploiting the capability of this method

to provide a complete characterization of TE elements. We

first describe the electrical impedance models required to

correctly interpret the experimental results by solving the

heat equation in the frequency domain under adiabatic condi-

tions and Peltier mode operation. Then, experimental data of

TE materials are analyzed employing a fitting routine to the

theoretical models. All the TE parameters (the Seebeck coef-

ficient, electrical resistivity, and thermal conductivity) and

thermal properties (specific heat and thermal diffusivity) can

be obtained; proving the suitability of the models and the

potential of IS as a very useful characterization method for

TEs.

a)Author to whom correspondence should be addressed. Electronic mail:

jorge.garcia.canadas@gmail.com.
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II. IMPEDANCE MODELS

The impedance Z¼V/I of a TE element with a certain

cross-sectional area A and length L contacted by two metallic

contacts of length LM (Fig. 1) is given by the ratio of the

potential difference V across the element to the current I
flowing through the external circuit. Under operation, the

voltage drop of the system presents two contributions, the

one due to the ohmic resistance R of the system (which

includes the intrinsic electric resistances of the material Ri

and metallic contacts Rm, and the contact resistances Rc) and

the one produced by the Seebeck effect. Taking this into

account, the impedance function becomes

Z ¼ Rþ S T Lð Þ � T 0ð Þ½ �
I

; (1)

where T(0) and T(L) are the temperatures at x¼ 0 and x¼L,

respectively. Our analysis neglects the Seebeck effect in the

contacts since metals usually present much smaller S than

TE materials and is restricted to impedance measurements

performed under a small ac perturbation around an initial

steady state of thermal equilibrium. In this way, the tempera-

ture difference is expected to be very small and it is assumed

that all the TE coefficients and thermal properties are inde-

pendent of temperature.

It is clear from Eq. (1) that to identify the impedance

function, it is necessary to know the evolution with fre-

quency of the temperatures at the edges of the TE element

T(L)-T(0). This involves solving the heat equation of the

system. For this purpose, adiabatic conditions were consid-

ered and the Joule effect was neglected9 due to the low

electrical resistivity of the materials and the small currents

involved. Under these assumptions (adiabatic boundaries

and thermal properties independent of T), the temperature

at LH¼L/2 remains always constant, i.e., the heat flowing

in from the left equals the one flowing out to the right,

resulting T(LH)¼Ti at any given time t (see Fig. 1). De

Marchi et al.10 solved this equation under these conditions

in the framework of thermal impedance. The analysis is

extended here for the electrical impedance and with a more

detailed focus on the resulting equivalent circuit elements

and the response in the complex plane plots. This will be

performed with and without the influence of metallic

contacts.

A. No contact influence

In a first approach, the presence of the contacts was

neglected (extremely thin contacts assumption). It should be

noted that in reality contacts are always needed, otherwise

no Peltier effect will be produced. The heat equation of the

system shown in Fig. 1 is given by

@2T

@x2
¼ 1

aTE

@T

@t
; at 0 < x < L; (2)

where aTE is the thermal diffusivity of the TE element, which

is related to the thermal conductivity (kTE), the mass density

(qTE), and the specific heat (CpTE) of the TE element by

aTE¼ kTE/qTECpTE. If DT¼ (T-Ti) is considered as the tem-

perature difference respect to Ti, then @(DT)¼ @T. Using this

equivalence and the Laplace transform13,14

L½DT� ¼
ð1

0

DT exp ð�jxtÞdt ¼ h: (3)

Equation (2) was converted from the time domain into the

frequency domain (jx)

@2h
@x2
� jx

aTE
h ¼ 0 at 0 < x < L; (4)

where j¼
ffiffiffiffiffiffiffi
�1
p

is the imaginary number and x is the angular

frequency, defined by x¼ 2pf, with f the oscillating fre-

quency of the ac signal.

The solution and derivative @h/@x of Eq. (4) are given by

h x; jxð Þ ¼ C1sinh
x

LH

jx
xTE

� �0:5
" #

þ C2cosh
x

LH

jx
xTE

� �0:5
" #0:5

; (5)

@h
@x

x; jxð Þ ¼ 1

LH

jx
xTE

� �0:5
(

C1cosh
x

LH

jx
xTE

� �0:5
" #

þ C2sinh
x

LH

jx
xTE

� �0:5
" #)

; (6)

where C1 and C2 are constants and xTE is the characteristic

angular frequency, which is related to the thermal diffusivity

and length by

xTE ¼
aTE

L2
H

: (7)

FIG. 1. Physical model of a thermoelectric element contacted by two metal-

lic contacts. The arrows indicate the direction of the conducting heat fluxes

appearing at the junctions as a consequence of the Peltier effect when an

n-type TE material and a positive current are considered. For the Peltier

heat, the arrows point to the junction when electrons dissipate heat to the lat-

tice and out of the junction when the electrons absorb heat from the lattice.

The solid line depicts qualitatively the thermal profile at steady state. The

dotted line shows the plane where the temperature remains constant at any

time. The dashed line indicates the initial temperature.
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The boundary conditions given by the constant tempera-

ture plane (x¼ LH) and the adiabatic boundaries can be also

defined in the frequency domain as

hðLHÞ ¼ 0; at x ¼ LH; (8.1)

� p0i0
A
þ kTE

@h
@x

� �
0

¼ 0; at x ¼ 0; (8.2)

where p0 and i0 are the Peltier coefficient and the Laplace

transform of the current (L[I] ¼ i) at x¼ 0. Applying these

boundary conditions to Eqs. (5) and (6), the integration con-

stants can be obtained

C1 ¼
p0i0LH

kTEA

jx
xTE

� ��0:5

; (9)

C2 ¼ �
p0i0LH

kTEA

jx
xTE

� ��0:5

tanh
jx
xTE

� �0:5
( )

: (10)

T(L)-T(0), which is needed for the calculation of the imped-

ance (Eq. (1)), is given in the frequency domain by �2h(0).
Using this and the Kelvin relationship p0¼ ST(0), the imped-

ance function in the frequency domain can be obtained

Z jxð Þ ¼ Rþ S2TiL

kTEA

jx
xTE

� ��0:5

tanh
jx
xTE

� �0:5
( )

; (11)

taking into account that T(0)� Ti (due to the small ac signal

applied). It can be observed that a TE resistance RTE¼ S2TiL/
kTEA appears in the equation. This resistance accounts for

the losses due to the existence of the Seebeck voltage VS and

was defined previously as RTE¼VS/I.15 It is interesting to

note that the last term of Eq. (11) takes the form of a

constant-temperature Warburg (WCT)

ZWCT jxð Þ ¼ RTE
jx
xTE

� ��0:5

tanh
jx
xTE

� �0:5
( )

: (12)

We use this denomination due to the similarity with a finite-

length Warburg with transmissive boundary (short Warburg)

element frequently used in electrochemistry,16 which relates

to the Poisson-Nernst-Planck model.17 It should be noted

that although the equations are the same, the physical mean-

ing of the parameters completely differs.

Fig. 2(a) shows the impedance response and its corre-

sponding equivalent circuit of Eq. (11) using typical values

corresponding to a Bi2Te3 TE element. Two regions appear

in the figure, which are separated by a turnover frequency

x � 2pixTE (pi¼ 3.14). At this angular frequency, the mag-

nitude of the impedance is RTE/3. At high angular frequen-

cies x � 2pixTE, if the influence of R is discarded (R¼ 0),

Eq. (11) becomes

Z ¼ S2TiL

kTEA

jx
xTE

� ��0:5

¼ 2S2Ti

A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kTEqTECpTE

p jxð Þ�0:5: (13)

Due to the proportionality Z(jx) / (jx)�0.5, a 45� line (slope 1)

is expected as shown clearly in Fig. 2(a). At low angular

frequencies x � 2pixTE, the reciprocal of the impedance (ad-

mittance) is given (when R¼ 0) by

Z�1 ¼ 1

RTE
þ 1

3

jx
RTExTE

; (14)

which corresponds to the response of a semicircle (Fig. 2(a)).

A previously reported15 TE capacitance can be obtained

from CTE¼ 1/RTExTE. This capacitance, which controls the

imaginary response of the admittance at low frequencies, is

determined by the thermal process, which induces the

Seebeck voltage CTE¼ Idt/dVS. It can be seen that at steady

state (x ! 0), the impedance defined by Eq. (11) becomes

Z¼RTE, and hence, the distance between the real axis inter-

cepts directly provide RTE (Fig. 2(a)). The total impedance

of the system at steady state or dc resistance is given by

Rdc¼RþRTE.

B. Contact influence

In order to evaluate the influence of the metallic con-

tacts, it is needed to solve the heat equation considering their

influence. Following the same procedure as above, it can be

obtained in the frequency domain

@2h
@x2
� jx

aM
h ¼ 0; at –LM < x < 0; (15)

where aM is the thermal diffusivity of the metal, which is

related to the thermal conductivity (kM), the mass density

(qM), and specific heat (CpM) of the contact by aM¼ kM/
qMCpM. The boundary conditions are given by

@h
@x

� �
�LM

¼ 0; at x ¼ �LM; (16.1)

�p0i0

A
� kM

@h
@x

� �
0;M

þ kTE
@h
@x

� �
0;TE

¼ 0; at x ¼ 0;

(16.2)

hð0ÞM ¼ hð0ÞTE; at x ¼ 0: (16.3)

Equation (16.3) ensures the temperature continuity at x¼ 0.

After solving the system of equations (Eqs. (4), (8.1), (8.2),

(15), and (16.1)–(16.3)) and introducing the resulting

expression for h(0) in the impedance function, it can be

found that

Z ¼ Rþ 1

Z�1
WCT þ Z�1

Wa

� �
; (17)

where

ZWa ¼ RM
jx
xM

� ��0:5

coth
jx
xM

� �0:5
( )

; (18)

is defined as an adiabatic Warburg (Wa), which shows a simi-

lar expression to a finite-length Warburg with blocking

boundary element (open Warburg) from the Poisson-Nernst-

Planck model.16,17 In Eq. (18), xM¼ aM/L2
M is the character-

istic angular frequency of thermal diffusion in the metallic

174510-3 J. Garc�ıa-Ca~nadas and G. Min J. Appl. Phys. 116, 174510 (2014)
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contact and RM¼ 2S2TiLM/kMA is a TE resistance related to

energy loss in the metal contact due to the existence of the

Seebeck voltage in the system. It can be seen from Eq. (17)

that the total impedance of the system consists of a pure re-

sistance R connected in series with two parallel connected

Warburg elements (ZWCT and ZWa). The corresponding

equivalent circuit is shown by the inset of Fig. 2(c). It can be

observed that when LM ! 0 (no contact influence approxi-

mation), Eq. (17) equals Eq. (11).

The response of the adiabatic Warburg results from heat

diffusion taking place from x¼ 0 towards x¼�LM.

Assuming that the Peltier heat is only conducted into the

metal contacts, the impedance of the system (discarding R)

can be calculated using Eq. (18). Fig. 2(b) shows the result

obtained using typical thermal properties of Cu. The charac-

teristic angular frequency x¼ 2pixM separates the Nyquist

plot into two regions. At x� 2pixM, Eq. (18) becomes

Z ¼ RM
jx
xM

� ��0:5

¼ 2S2Ti

A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kMqMCpM

p jxð Þ�0:5: (19)

At low frequencies (x� 2pixM), the impedance is given by

Z ¼ 1

3
RM þ

RMxM

jx
: (20)

It can be seen that the real part of the impedance is a con-

stant, RM/3 (Fig. 2(b)). At these frequencies, the temperature

change in the contact is mainly governed by the specific heat

(accumulation of heat). This can be seen from the second

term in Eq. (20), which becomes larger at lower frequencies

and only contains CpM as thermal parameter. It should be

noted that from the value of RM, it is possible to obtain the S
of the TE material since the thermal conductivity of the me-

tallic contact (typically Cu or Ni) is usually known. We

exploit this below to provide a complete characterization of

all the TE parameters.

Fig. 2(c) shows the total impedance of the system calcu-

lated using Eq. (17) based on a Cu/Bi2Te3 system. Fig. 2(d)

displays the blow-up of the high frequency region of Fig. 2(c).

It can be seen that in this regime, the response is dominated

by the properties of contacts. When kM � kTE, the TE mate-

rial behaves nearly as a thermal insulator. However, if the

thermal conductivities of the contacts and TE material do not

differ greatly, a contribution from both metal and TE element

FIG. 2. Simulated impedances for a

Bi2Te3 thermoelectric element

with A¼ 1 mm2, L¼ 1.5 mm, aTE

¼ 0.011 cm2/s, kTE¼ 1.5 W/mK, at

Ti¼ 300 K. The square indicates the

characteristic angular frequencies xc

that separates the Nyquist plot into lin-

ear and semicircle regions. (a) Under no

contact influence using the equivalent

circuit in the inset, the characteristic

frequency is xc¼ 2pixTE¼ 12.6 rad/s.

(b) Under contact influence and assum-

ing that the Peltier flux is only con-

ducted towards the metallic contact.

Using LM¼ 0.2 mm, aM¼ 1.11 cm2/s,

kM¼ 400 W/mK, and xc¼ 2pixM

¼ 17436 rad/s. The value of the series

resistance R has been subtracted in the

real axis to gain clarity. (c) With contact

influence using the equivalent circuit of

the inset, with xc¼ 2pixTE¼ 12.6 rad/s

(solid line). The empty circles represent

the same plot of (a) and the solid circles

represent the same plot of (b) with the

presence of R. (d) The blow-up at high

frequency region in plot, (c) where R
has also been subtracted in the real axis

and the solid square represents the char-

acteristic frequency xc¼ 2pixM due to

metal contact.
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is expected. At low frequencies, the Nyquist plot becomes

almost a perfect semicircle (Fig. 2(c)), indicating that the ther-

mal process in this regime is dominated by the response of the

TE element (Eq. (11)). The total impedance of the system at

steady state (i.e., x¼ 0) becomes a pure resistance with a

value given by Rdc¼RþRTE, as if no contact exists.

III. EXPERIMENTAL VALIDATION

In order to experimentally validate the developed theoret-

ical models, the impedance response of p-type Bi2Te3 ele-

ments (European Thermodynamics Ltd.) with a cross-

sectional area of 1.4 � 1.4 mm2 and a length of 1.6 mm were

measured. The first sample was designed to have very thin

contacts and was prepared by spreading a layer of Ag paint on

the top and bottom sides of the element (Fig. 3(a)). This sam-

ple was sandwiched by two short Cu probes with sharp tips

that were connected to the input leads of the equipment. The

length of the leads was minimized as much as possible to

avoid a significant contribution from their inductance in the

measurements. The tips were sharpened to minimize the heat

conduction through these probes. A second sample was pre-

pared with thick contacts that consist of two-layer structure of

Cu/ceramic contacts as typically used in TE modules (Fig.

3(b)). The Cu/ceramic pieces have the same cross-sectional

area as that of the TE element and the thickness of 0.4 mm

and 0.8 mm, respectively. The contacts were attached to the

TE element using Ag paint. Finally, very thin Cu wires were

attached to the Cu contacts using Ag paint. In addition, a com-

mercial TE module (European Thermodynamics Ltd.) formed

by 254 thermoelements (1 mm� 1 mm� 1.5 mm) was also

investigated, which was suspended in air during measure-

ments to provide adiabatic conditions. The thickness of the

ceramic plates of the module is 0.8 mm.

Impedance measurements were performed on the ther-

moelements at room temperature using a PGSTAT302N

potentiostat equipped with a FRA32M impedance module

(Metrohm Autolab B. V.) in a frequency range of 10 mHz to

100 Hz. An inductive-like response was observed at frequen-

cies higher than 100 Hz but this was discarded from our anal-

ysis. A sinusoidal signal of 20 mA (rms) in amplitude was

applied without dc bias (0 A dc). The 20 mA rms amplitude

corresponds to �1.75 mV rms for the sample with very thin

contacts (Fig. 3(a)). When the elements were measured, the

first results were discarded since shifts to lower values in the

real part of the impedance were observed, probably due to

the change of the contact properties when current flows

through for the first time. Alternatively, a current can be

applied to the sample for a few seconds before running the

impedance. For the TE module, impedance measurements

were performed in a frequency range of 1 mHz to 1 kHz with

an ac voltage of 10 mV (peak) in amplitude and without dc

bias. This frequency range was also selected to exclude the

high-frequency inductive response. All the measurements

performed showed good repeatability (around 2% deviation).

Fitting of experimental data to the appropriate equivalent cir-

cuits was performed using Zview 3.3 software.

Fig. 4 shows the experimental results of the TE elements

described in Fig. 3. Since the size of the samples and the

temperature variations across the thermoelements are small,

FIG. 3. Sketch of the thermoelements

prepared for the impedance measure-

ments. (a) Sample with very thin Ag

paint contacts contacted by sharpened

Cu probes. (b) Sample with Cu/ce-

ramic contacts contacted by thin Cu

wires.

FIG. 4. Impedances of p-type thermoelements with very thin Ag contacts (a) and with Cu/ceramic contacts (b). Line in (a) represents the fitting to the equiva-

lent circuit in Fig. 2(a).
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the heat loss due to convection is negligible and hence the

system is close to adiabatic conditions. The response in Fig.

4(a) corresponds to the TE element with thin Ag paint con-

tacts (Fig. 3(a)). Clearly, it exhibits a similar shape to Fig.

2(a). By fitting the results to the equivalent circuit consider-

ing no contact influence (inset of Fig. 2(a)), the values for R,

RTE, and xTE can be extracted (see Table I). An excellent fit-

ting was achieved with less than 2% errors. It is to be noted

that R determined from this experiment consists of the resis-

tances of the TE element, contacts, and wires. In order to

determine the resistivity of the TE element (without influ-

ence of contact and wire), additional two probes are needed

(4-probe method).

The thermal diffusivity of the TE material can be calcu-

lated directly from xTE (Eq. (7)). Using the S value obtained

from a hot probe apparatus (175 lV/K), the thermal conduc-

tivity can be determined from RTE and the specific heat from

CTE (Ti¼ 300 K and qTE¼ 7.7 g/cm3 values were used). All

these values are summarized in Table I and show similar val-

ues to typical Bi2Te3 samples,18 demonstrating the feasibility

of determining thermoelectric properties using the proposed

impedance technique. It should be noted that a major advant-

age of this approach is its ability to determine several ther-

mal parameters (thermal diffusivity, thermal conductivity,

and specific heat) from a relatively simple impedance

measurement.

The impedance response of the TE element with Cu/ce-

ramic contacts (Fig. 3(b)) is shown in Fig. 4(b). It can be

seen that the Nyquist plot in this case shows a semicircle

with a linear part (45� slope) significantly shortened. This

result is in good agreement with that predicted by the equiva-

lent circuit considering the contact influence (Fig. 2(c)). Due

to the high sensibility required for impedance measurement

at these high frequencies (45� slope zone), the accuracy of

the measurements were affected by the noises and it was not

possible to obtain a good fit from Fig. 4(b). However, we

believe that the accuracy of measurements can be improved

by using a thicker ceramic or a contact material with lower

thermal conductivity such as stainless steel.

As an alternative to this, an experiment was carried out

using a TE module to demonstrate the possibility of provid-

ing a complete TE characterization using the impedance

method. Fig. 5 shows the impedance results of the module

investigated. It shows the same shape as in Fig. 4(b) (Eq.

(17)) and a good fit was obtained. Due to small thickness and

high thermal conductivity (kCu� 400 W/mK) of the Cu

layer, its influence in the spectrum can be neglected and the

ceramic layer becomes the only dominant factor that deter-

mines the impedance response at these high frequencies.

Neglecting the spreading-constriction thermal process19 in

the ceramic layer and using the thermal conductivity of

30 W/mK (for aluminum oxide ceramic), the S of the TE ma-

terial can be calculated from RC/254¼ 2S2TiLC/kCA, which

gives 191.5 lV/K. Note that C is used now as the subscript to

account for the ceramic instead of the metal (M). Once S is

determined, the rest of the TE properties can be easily calcu-

lated (see Table I). In this way, a value for kTE¼ 1.60 W/mK

was found from RTE/254¼ S2TiL/kTEA, which are very close

to the typical values for Bi2Te3. It should be noted that the

values of aTE and CpTE deviate around an order of magnitude

respect to the typical Bi2Te3 values in this case. This is due

to the fact that xTE is now influenced by the contact and it is

not only determined by the diffusion of heat in the TE mate-

rial. Diffusion also occurs in the contact, which makes the

effective thermal diffusivity smaller (lower heat diffusion

rate). The calculated R¼ 4.29 X gives the contribution of

both TE element and parasitic resistances. This work demon-

strates clearly the capability and potential advantages of IS

as a tool for the complete characterization of TE materials.

However, it is should be noted that this technique is only

effective for TE materials with a moderate or large zT values.

If zT< 0.1, the semicircle on the Nyquist plot cannot easily

be observed.

IV. CONCLUSIONS

IS has been analyzed as a tool for the characterization of

TE materials and devices. This work has led to the

TABLE I. Fitting parameters and extracted thermal properties.

Sample R (X) RTE (X) xTE (rad/s) CTE (F) kTE (W/mK) aTE (cm2/s) CpTE (J/gK) S (lV/K) Rc (X) xc (rad/s)

Element 0.084 0.0058 2.0 86.21 1.27 0.013 0.13 … … …

Module 4.292 2.585 0.24 1.61 1.60 0.0013 1.56 191.5 0.149 6.08

FIG. 5. Nyquist plot of a 254-leg thermoelectric module measured at

“adiabatic” condition with the module suspended in air. The inset shows a

magnified high-frequency part. The line corresponds to the fitting to a pure

resistance (R) connected in series with parallel connected constant-

temperature Warburg element (ZWCT) and adiabatic Warburg element (ZWa).

The fitting provides R¼ 4.29 X, Rc¼ 0.149 X, xc¼ 6.08 rad/s, RTE¼ 2.585

X, and xTE¼ 0.24 rad/s.
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development of suitable equivalent circuits that provide

excellent fit to the impedance response of TE processes.

Using the equivalent circuit, which consists of a pure resist-

ance connected in series with two parallel-connected

Warburg elements, several key TE parameters can be

extracted from a relatively simple impedance measurement.

This provides potentially an effective and rapid technique

for characterization of TE properties.

The experimental study shows that, with the knowledge

of the Seebeck coefficient, all key thermal parameters

(including thermal diffusivity, thermal conductivity, and spe-

cific heat) of a TE element can be determined from the im-

pedance spectrum. Furthermore, if a test is performed using

a TE module, all the key TE properties (including the

Seebeck coefficient, electrical resistivity, thermal conductiv-

ity, thermal diffusivity, specific heat, and zT) of the TE mate-

rials can be estimated. The results demonstrate clearly the

capability of the impedance method as an effective tool for

the evaluation of TE devices and the feasibility for a com-

plete characterization of TE materials.
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