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Impedance spectroscopy is a well-established technique for the study of semiconductors and energy related 

devices. However, in the area of thermoelectrics (TEs) is not frequently used and there is a lack of a physical 

background for a proper interpretation of the results. Usually, in the low frequency regime the impedance 

spectrum of TE modules working in cooling mode is characterized by a semicircle which can be modelled as a 

parallel connection of a resistor and a capacitor. Here we present a theoretical analysis to understand the origin 

of both parameters in bulk thermoelectric modules working as Peltier coolers. The analysis introduces a 

thermoelectric capacitance and a thermoelectric resistance that are defined by the temperature, the Seebeck 

coefficient and the thermal properties of the module (specific heat and thermal conductivity respectively). The 

product of both provides a time constant that directly relates to the thermal diffusivity. Our analysis provides a 

theoretical model able to interpret the low frequency results and obtain relevant thermal parameters from a 

single impedance measurement. 

Keywords Characterisation of thermoelectric modules, ac electrical impedance. thermal 

constants 

Introduction 

Impedance spectroscopy (IS) is a powerful technique extensively used for characterisation 

of a wide range of electronic materials and devices (i. e., solar cells [1], fuel cells [2], photo-

electrochemical hydrogen generation [3], batteries and supercapacitors [4]). It has the ability 

to separate in the frequency domain most of the processes that govern the performance of the 
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devices, providing useful insight and quantitative measure of the physical processes of the 

system. However, it requires suitable physical models for correct interpretation of the 

equivalent circuit obtained by appropriate fitting of measurement data. In the thermoelectric 

(TE) field this technique is not frequently used [5-11] and it lacks a suitable physical model 

able to provide all the information contained in the impedance spectra. 

Measurements performed on TE modules show a characteristic semicircle at low 

frequencies in the Nyquist representation which can be modelled as a parallel connection of a 

resistor and a capacitor. The resistance is in the order of few Ω and the capacitance is about 1 

F. This value of the capacitance is quite large compared to conventional capacitors [11] and 

its origin is far from possible contact capacitances that could lie in the range of μF. In order to 

obtain a physical model for a proper interpretation of the impedance results in TEs it is 

important to understand the physical meaning of this capacitance and the related resistance. 

In this paper we present an analysis to determine the origin of these parameters. The new 

concepts of a thermoelectric capacitance and a thermoelectric resistance are introduced. A 

physical meaning and definition is provided. Furthermore, a time constant determined by the 

product of both allows the direct determination of the thermal diffusivity. This knowledge 

will provide a starting point for the proper understanding of the impedance results in TEs, 

gaining insights into a whole physical picture of the devices under actual working conditions. 

Experimental part and discussion 

A commercial TE module (European Thermodynamics Ltd., Leicester, England) formed 

by 254 squared thermoelements (1x1x1.5 mm
3
) was suspended in vacuum (≈10

-5
 torr) and 

connected to an Autolab PGSTAT 302N potentiostat equipped with a FRA32M impedance 

module (Metrohm Autolab B. V., Utrecht, The Netherlands). Impedance measurements were 

performed at room temperature at 0 V dc with a 10 mV amplitude from 1 mHz to 1 MHz. 
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Theoretical results 

The solution to the steady state heat balance equation for an n-type thermoelement 

assuming non-temperature dependence of the TE properties provides the heat removal rate at 

the cold side as [12-13], 
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where QC is the heat flow extracted from the cold side, A is the cross-sectional area, L the 

element length, π the Peltier coefficient, I the electric current, λ the thermal conductivity, ΔT 

the temperature difference and R is the ohmic resistance of the thermoelement. For a TE 

module suspended in vacuum, it is assumed that QC=0, then, 
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The temperature difference can be obtained from Eq. 2 as, 
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We define a TE resistance RTE from the voltage contribution due to the TE effects that 

exists in the total voltage V applied to the thermoelement, V=αΔT+IR, 
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where ΔVα=V(x=0)-V(x=L). This resistance relates to the energetic losses that the carriers 

experience by the electric field created by the temperature difference (Seebeck voltage). 

Introducing Eq. 3 in Eq. 4, we obtain, 
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This equation has units of Ω and relates to the TE parameters of the device. A large value for 

RTE is obtained for small λ. 
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Alternatively, we define a thermoelectric capacitance CTE as, 
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where Vα is the Seebeck voltage. The physical meaning of CTE is not completely clear from 

the above equation since it could be related to either the charge accumulation (Idt) due to the 

reorganization of the carriers or the rate at which the temperature gradient is built (dT/dt). We 

will try to clarify this in a future work. By looking at the thermal diffusivity β, which depends 

on the thermal conductivity, the material’s density ρ and the specific heat Cp, 

pC


   (7) 

and using the Fourier’s law of heat conduction (dQ/Adt=-λdT/dx) and the definition of the 

specific heat (Cp=dQ/ρALdT), we obtain, 
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We should remark that this equation is only correct when the variation of the conductive heat 

flux is only due to the heat absorption in the material, i. e., when the Joule effect is neglected. 

If we introduce Eq. (8) in Eq. (6), it results,  
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Finally, using the heat balance at steady state at the cold junction, 
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we obtain, 
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This equation has units of F and as occurred for RTE is a function of the TE properties of the 

thermoelement. It shows that the capacitance of the device increases with the specific heat. In 

a TE module working as a Peltier cooler, the external applied voltage Vd sets an ohmic 

current Id through the circuit as shown in Fig. 1. The higher the current the higher the cooling 

effect. However, when a temperature gradient starts to rise due to the Peltier effect, the 

carriers reorganize and the Seebeck voltage appears, which creates the inverse current Iα (Fig. 

1). 

 

Figure 1 Scheme to illustrate the TE module operation as Peltier cooler. In equilibrium (no voltage applied), the 

carrier concentration is constant along the material (dashed line). However, when a current is applied the Peltier 

effect takes place and the carriers reorganize/accumulate (solid line) due to the temperature gradient appearing.  

 

Both equations obtained for CTE and RTE are in agreement with the results from Downey et 

al. [8] when neglecting the Joule effect. However, unlike these authors, we have included 

here the influence of the Joule effect in RTE and the derivation of the parameters from 

physical definitions instead of using a direct comparison between thermal and electrical 

circuits.  

By multiplying both RTE and CTE (neglecting Joule heating) we obtain a time constant τ, 



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defined by the thermal diffusivity, which determines how fast heat is transported while it is 

been absorbed in a material volume of a certain length. A low RTE (high λ) and low CTE 
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(small Cp) provides lower modification of the initial ohmic current and hence maximize the 

cooling effect. This translates into a higher value of the thermal diffusivity. However, this 

will make a change in the TE coefficients, so all these events described in the low frequency 

part of the impedance analysis reflect the common issue in the TE field where all the 

parameters governing the performance of the devices are interrelated. 

Experimental results 

Fig. 2 shows the impedance measurements of the TE module in vacuum. A semicircle is 

observed in the low frequency part of the Nyquist plot (Fig. 2a) that can be fitted to a parallel 

combination of a resistance and a capacitor. The inset of the graph shows a zoom of the high 

frequency response, where the intercept with the real axis provides the ohmic resistance of 

the module [8], R=4.0 Ω, which directly relates to the materials conductivity using the 

geometric parameters of the module. A value σ=0.95x10
5
 S/m is obtained, in agreement with 

the value provided by the manufacturer (Table 1). 



7 

 

 

Figure 2 Nyquist (a) and bode (b, c) plots of the impedance measurements of a thermoelectric module operating 

as a Peltier cooler (dots and squares). Lines represent the fitting to the low frequency part. The inset on the 

Nyquist plot indicates a zoom to the high frequency region.  

 

The fitting results provide a value of RTE=2.53 Ω, CTE=1.70 F and hence τ=4.30 s. Using 

the values of TE properties provided in Table I, neglecting the Joule effect and taking into 

account that the module is formed by 254 legs, we obtain a value of RTE=3.05 Ω, CTE=0.65 F 

and τ=1.98 s which lie in the same order of magnitude than the ones obtained from the 

impedance fitting. We should remark that these values are obtained from parameters related 

to the TE materials, and the contact and ceramic plates of the module has not been taken into 

account. Since λ is much higher for the contacts and the ceramic plates than in the materials, 

good agreement is found in RTE. However, the specific heat of the ceramic and Cu contacts 

are in a similar order of magnitude to the Bi2Te3 legs, which leads to a less closer value for 

CTE and β than the ones provided by the impedance, but in the same order of magnitude. The 

parameters extracted for the IS spectrum are the parameters for the whole device and hence, 

consideration of the contacts and ceramic plates is required for a more accurate agreement [8, 

14]. 
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Table I Parameters for the bismuth telluride legs of the module, obtained from the module manufacturer and 

reference [15] when indicated by *. 

σ (S/m) α (µV/K) π (V) A (cm
2
) L (cm) ρ (g/cm

3
) cp (J/gK) λ (W/mK) β (cm

2
/s) 

1.04x10
5
 ±200 ±0.06 0.01 0.15 7.7 0.17* 1.5* 0.007* 

 

Conclusions 

The low frequency region of the impedance spectra of commercial TE modules operating 

as Peltier coolers has been analysed and a theoretical background developed. A new concept 

of a TE capacitance and a TE resistance has been introduced that accounts for the low 

frequency semicircle. Both CTE and RTE directly relate to the Seebeck and Peltier coefficients. 

The CTE depends on the specific heat and density of the materials and RTE is proportional to 

the reciprocal of the thermal conductivity. The time constant defined by the product of both 

elements directly provides the thermal diffusivity. These results provide a theoretical 

background for the analysis of the low frequency part of impedance results and show how all 

the relevant TE parameters can be obtained from a single IS measurement. 
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