20 research outputs found

    Thermocapilarity and radiative heat flux oscillations

    No full text
    We present a detailled experimental study of the thermocapillary motion of an aniline drop in an stably stratified fluid sytem driven by a laser beam. The thermocapillary motion of drops is the result of the temperature dependence of the interfacial tension. If the surface of the drop is subject to thermal gradients, then non-equilibrium surface tension effects appear, which in some cases can move the drop. We measure some of the velocity induced fields , vorticity, oscilations and intermittency of this complex flow. The source of the no uniformity of the temperature of the surface can be, as is in this experiment, the non uniform heating of the floating drop by a laser beam. In recent years, the thermocapillary movement of bubbles and drops under the influence of laser radiation has received more experimental attention thanks to the improvement in the flow visualization techniques.Peer ReviewedPostprint (published version

    Study of rapid ionisation for simulation of soft X-ray lasers with the 2D hydro-radiative code ARWEN

    Get PDF
    We present our fast ionisation routine used to study transient softX-raylasers with ARWEN, a two-dimensional hydrodynamic code incorporating adaptative mesh refinement (AMR) and radiative transport. We compute global rates between ion stages assuming an effective temperature between singly-excited levels of each ion. A two-step method is used to obtain in a straightforward manner the variation of ion populations over long hydrodynamic time steps. We compare our model with existing theoretical results both stationary and transient, finding that the discrepancies are moderate except for large densities. We simulate an existing Molybdenum Ni-like transient softX-raylaser with ARWEN. Use of the fast ionisation routine leads to a larger increase in temperature and a larger gain zone than when LTE datatables are used

    Procesamiento analítico y visualización de datos epidemiológicos de enfermedades transmitidas por vector en Veracruz

    Get PDF
    En los últimos 30 años el incremento considerable del número de casos de dengue en zonas urbanas y semiurbanas en el mundo se ha convertido en un problema de salud pública. En México, de acuerdo con el informe del Sistema Nacional de Vigilancia Epidemiológica en México,el Estado de Veracruz ocupó el segundo lugar con mayor número de casos de incidencia confirmados en el 2017. Para la consulta de esta información se tienen diferentes herramientas tecnológicas para analizar y visualizar información sanitaria, tales como archivos en PDF y archivos en hojas de cálculo de Excel. Este tipo de archivos representan obstáculos para la búsqueda de información y la subsecuente elaboración de reportes. El presente proyecto de investigación consiste en implementar una herramienta de análisis de datos, a través de una plataforma de inteligencia de negocios capaz de permitir la visualización de datos históricos y analíticos de Enfermedades Transmitidas por Vector por medio de tableros gráficos dinámicos. De igual manera, se pretende simplificar el acceso a un solo repositorio de datos para agilizar la consulta de información desde diversos dispositivos, incluidos los móviles, así como facilitar al usuario la elaboración y difusión de sus propios informes para el apoyo a la toma de decisiones.Sociedad Argentina de Informática e Investigación Operativ

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    NATO Advanced Study Institute on Nonequilibrium Cooperative Phenomena in Physics and Related fields

    No full text

    Thermocapilarity and radiative heat flux oscillations

    No full text
    We present a detailled experimental study of the thermocapillary motion of an aniline drop in an stably stratified fluid sytem driven by a laser beam. The thermocapillary motion of drops is the result of the temperature dependence of the interfacial tension. If the surface of the drop is subject to thermal gradients, then non-equilibrium surface tension effects appear, which in some cases can move the drop. We measure some of the velocity induced fields , vorticity, oscilations and intermittency of this complex flow. The source of the no uniformity of the temperature of the surface can be, as is in this experiment, the non uniform heating of the floating drop by a laser beam. In recent years, the thermocapillary movement of bubbles and drops under the influence of laser radiation has received more experimental attention thanks to the improvement in the flow visualization techniques.Peer Reviewe

    Thermocapilarity and radiative heat flux oscillations

    No full text
    We present a detailled experimental study of the thermocapillary motion of an aniline drop in an stably stratified fluid sytem driven by a laser beam. The thermocapillary motion of drops is the result of the temperature dependence of the interfacial tension. If the surface of the drop is subject to thermal gradients, then non-equilibrium surface tension effects appear, which in some cases can move the drop. We measure some of the velocity induced fields , vorticity, oscilations and intermittency of this complex flow. The source of the no uniformity of the temperature of the surface can be, as is in this experiment, the non uniform heating of the floating drop by a laser beam. In recent years, the thermocapillary movement of bubbles and drops under the influence of laser radiation has received more experimental attention thanks to the improvement in the flow visualization techniques.Peer Reviewe
    corecore