9 research outputs found

    Dust environment and dynamical history of a sample of short-period comets: II. 81P/Wild 2 and 103P/Hartley 2

    Full text link
    Aims. This paper is a continuation of the first paper in this series, where we presented an extended study of the dust environment of a sample of short-period comets and their dynamical history. On this occasion, we focus on comets 81P/Wild 2 and 103P/Hartley 2, which are of special interest as targets of the spacecraft missions Stardust and EPOXI. Methods. As in the previous study, we used two sets of observational data: a set of images, acquired at Sierra Nevada and Lulin observatories, and the Afρ data as a function of the heliocentric distance provided by the amateur astronomical association Cometas-Obs. The dust environment of comets (dust loss rate, ejection velocities, and size distribution of the particles) was derived from our Monte Carlo dust tail code. To determine their dynamical history we used the numerical integrator Mercury 6.2 to ascertain the time spent by these objects in the Jupiter family Comet region. Results. From the dust analysis, we conclude that both 81P/Wild 2 and 103P/Hartley 2 are dusty comets, with an annual dust production rate of 2.8 × 109 kg yr-1 and (0.4-1.5) × 109 kg yr-1, respectively. From the dynamical analysis, we determined their time spent in the Jupiter family Comet region as ~40 yr in the case of 81P/Wild 2 and ~1000 yr for comet 103P/Hartley 2. These results imply that 81P/Wild 2 is the youngest and the most active comet of the eleven short-period comets studied so far, which tends to favor the correlation between the time spent in JFCs region and the comet activity previously discussed

    A new method for assessing the performance of general circulation models based on their ability to simulate the response to observed forcing

    No full text
    © 2021 American Meteorological Society. All rights reserved.The reliability of general circulation models (GCMs) is commonly associated with their ability to reproduce relevant aspects of observed climate, and thus the evaluation of GCM performance has become a standard practice for climate change studies. As such, there is an ever-growing literature that focuses on developing and evaluating metrics to assess GCM performance. In this paper it is shown that some commonly applied metrics provide little information for discriminating GCMs based on their performance, once uncertainty is included.Anew methodology is proposed that differs from common approaches in that it focuses on evaluating GCMs' abilities to reproduce the observed response of surface temperature to changes in external radiative forcing (RF), while controlling for observed and simulated variability. It uses formal statistical tests to evaluate two aspects of the warming trend that are central for climate change studies: 1) if the response to RF produced by a particularGCMis compatible with observations and 2) if the magnitudes of the observed and simulated rates of warming are statistically similar. We illustrate the proposed methodology by evaluating the ability of 21 GCMs to reproduce the observed warming trend at the global scale and for eight subcontinental land domains. Results show that most of the GCMs provide an adequate representation of the observed warming trend for the global scale and for domains located in the Southern Hemisphere. However, GCMs tend to overestimate the warming rate for domains in the Northern Hemisphere, particularly since the mid-1990s

    Age- A nd sex-specific analysis of patients with embolic stroke of undetermined source

    No full text
    Objective: To investigate whether the correlation of age and sex with the risk of recurrence and death seen in patients with previous ischemic stroke is also evident in patients with embolic stroke of undetermined source (ESUS). Methods: We pooled datasets of 11 stroke registries from Europe and America. ESUS was defined according to the Cryptogenic Stroke/ESUS International Working Group. We performed Cox regression and Kaplan-Meier product limit analyses to investigate whether age (80 years) and sex were independently associated with the risk for ischemic stroke/TIA recurrence or death. Results: Ischemic stroke/TIA recurrences and deaths per 100 patient-years were 2.46 and 1.01 in patients 80 years old, 3.53 and 3.48 in women, and 4.49 and 3.98 in men, respectively. Female sex was not associated with increased risk for recurrent ischemic stroke/TIA (hazard ratio [HR] 1.15, 95% confidence interval [CI] 0.84-1.58) or death (HR 1.35, 95% CI 0.97-1.86). Compared with the group 80-year groups had higher 10-year cumulative probability of recurrent ischemic stroke/TIA (14.0%, 47.9%, and 37.0%, respectively, p 80 years compared with those <60 years of age, respectively. The age distribution in the ongoing ESUS trials may potentially influence their power to detect a significant treatment association. © 2017 American Academy of Neurology

    First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near the Event Horizon

    No full text
    Event Horizon Telescope (EHT) observations at 230 GHz have now imaged polarized emission around the supermassive black hole in M87 on event-horizon scales. This polarized synchrotron radiation probes the structure of magnetic fields and the plasma properties near the black hole. Here we compare the resolved polarization structure observed by the EHT, along with simultaneous unresolved observations with the Atacama Large Millimeter/submillimeter Array, to expectations from theoretical models. The low fractional linear polarization in the resolved image suggests that the polarization is scrambled on scales smaller than the EHT beam, which we attribute to Faraday rotation internal to the emission region. We estimate the average density n e ∼ 104-7 cm-3, magnetic field strength B ∼ 1-30 G, and electron temperature T e ∼ (1-12) 1010 K of the radiating plasma in a simple one-zone emission model. We show that the net azimuthal linear polarization pattern may result from organized, poloidal magnetic fields in the emission region. In a quantitative comparison with a large library of simulated polarimetric images from general relativistic magnetohydrodynamic (GRMHD) simulations, we identify a subset of physical models that can explain critical features of the polarimetric EHT observations while producing a relativistic jet of sufficient power. The consistent GRMHD models are all of magnetically arrested accretion disks, where near-horizon magnetic fields are dynamically important. We use the models to infer a mass accretion rate onto the black hole in M87 of (3-20) 10-4 M o˙ yr-1. © 2021. The Author(s). Published by the American Astronomical Society.

    Polarimetric Properties of Event Horizon Telescope Targets from ALMA

    No full text
    We present the results from a full polarization study carried out with the Atacama Large Millimeter/submillimeter Array (ALMA) during the first Very Long Baseline Interferometry (VLBI) campaign, which was conducted in 2017 April in the λ3 mm and λ1.3 mm bands, in concert with the Global mm-VLBI Array (GMVA) and the Event Horizon Telescope (EHT), respectively. We determine the polarization and Faraday properties of all VLBI targets, including Sgr A∗, M87, and a dozen radio-loud active galactic nuclei (AGNs), in the two bands at several epochs in a time window of 10 days. We detect high linear polarization fractions (2%-15%) and large rotation measures (RM &gt; 103.3-105.5 rad m-2), confirming the trends of previous AGN studies at millimeter wavelengths. We find that blazars are more strongly polarized than other AGNs in the sample, while exhibiting (on average) order-of-magnitude lower RM values, consistent with the AGN viewing angle unification scheme. For Sgr A∗ we report a mean RM of (-4.2 0.3) 105 rad m-2 at 1.3 mm, consistent with measurements over the past decade and, for the first time, an RM of (-2.1 0.1) 105 rad m-2 at 3 mm, suggesting that about half of the Faraday rotation at 1.3 mm may occur between the 3 mm photosphere and the 1.3 mm source. We also report the first unambiguous measurement of RM toward the M87 nucleus at millimeter wavelengths, which undergoes significant changes in magnitude and sign reversals on a one year timescale, spanning the range from -1.2 to 0.3 105 rad m-2 at 3 mm and -4.1 to 1.5 105 rad m-2 at 1.3 mm. Given this time variability, we argue that, unlike the case of Sgr A∗, the RM in M87 does not provide an accurate estimate of the mass accretion rate onto the black hole. We put forward a two-component model, comprised of a variable compact region and a static extended region, that can simultaneously explain the polarimetric properties observed by both the EHT (on horizon scales) and ALMA (which observes the combined emission from both components). These measurements provide critical constraints for the calibration, analysis, and interpretation of simultaneously obtained VLBI data with the EHT and GMVA. © 2021. The American Astronomical Society

    Search for magnetically-induced signatures in the arrival directions of ultra-high-energy cosmic rays measured at the Pierre Auger Observatory

    Get PDF
    We search for signals of magnetically-induced effects in the arrival directions of ultra-high-energy cosmic rays detected at the Pierre Auger Observatory. We apply two different methods. One is a search for sets of events that show a correlation between their arrival direction and the inverse of their energy, which would be expected if they come from the same point-like source, they have the same electric charge and their deflection is relatively small and coherent. We refer to these sets of events as "multiplets". The second method, called "thrust", is a principal axis analysis aimed to detect the elongated patterns in a region of interest. We study the sensitivity of both methods using a benchmark simulation and we apply them to data in two different searches. The first search is done assuming as source candidates a list of nearby active galactic nuclei and starburst galaxies. The second is an all-sky blind search. We report the results and we find no statistically significant features. We discuss the compatibility of these results with the indications on the mass composition inferred from data of the Pierre Auger Observatory. © 2020 IOP Publishing Ltd and Sissa Medialab

    GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼ 3.4 M o

    Get PDF
    On 2019 April 25, the LIGO Livingston detector observed a compact binary coalescence with signal-to-noise ratio 12.9. The Virgo detector was also taking data that did not contribute to detection due to a low signal-to-noise ratio, but were used for subsequent parameter estimation. The 90% credible intervals for the component masses range from to if we restrict the dimensionless component spin magnitudes to be smaller than 0.05). These mass parameters are consistent with the individual binary components being neutron stars. However, both the source-frame chirp mass and the total mass of this system are significantly larger than those of any other known binary neutron star (BNS) system. The possibility that one or both binary components of the system are black holes cannot be ruled out from gravitational-wave data. We discuss possible origins of the system based on its inconsistency with the known Galactic BNS population. Under the assumption that the signal was produced by a BNS coalescence, the local rate of neutron star mergers is updated to 250-2810. © 2020. The Author(s). Published by the American Astronomical Society.
    corecore