537 research outputs found

    Simultaneous Effect of Temperature and Irradiance on Growth and Okadaic Acid Production from the Marine Dinoflagellate Prorocentrum belizeanum

    Get PDF
    Benthic marine dioflagellate microalgae belonging to the genus Prorocentrum are a major source of okadaic acid (OA), OA analogues and polyketides. However, dinoflagellates produce these valuable toxins and bioactives in tiny quantities, and they grow slowly compared to other commercially used microalgae. This hinders evaluation in possible large-scale applications. The careful selection of producer species is therefore crucial for success in a hypothetical scale-up of culture, as are appropriate environmental conditions for optimal growth. A clone of the marine toxic dinoflagellate P. belizeanum was studied in vitro to evaluate its capacities to grow and produce OA as an indicator of general polyketide toxin production under the simultaneous influence of temperature (T) and irradiance (I0). Three temperatures and four irradiance levels were tested (18, 25 and 28 °C; 20, 40, 80 and 120 µE·m−2·s−1), and the response variables measured were concentration of cells, maximum photochemical yield of photosystem II (PSII), pigments and OA. Experiments were conducted in T-flasks, since their parallelepipedal geometry proved ideal to ensure optically thin cultures, which are essential for reliable modeling of growth-irradiance curves. The net maximum specific growth rate (µm) was 0.204 day−1 at 25 °C and 40 µE·m−2·s−1. Photo-inhibition was observed at I0 > 40 μEm−2s−1, leading to culture death at 120 µE·m−2·s−1 and 28 °C. Cells at I0 ≥ 80 µE·m−2·s−1 were photoinhibited irrespective of the temperature assayed. A mechanistic model for µm-I0 curves and another empirical model for relating µm-T satisfactorily interpreted the growth kinetics obtained. ANOVA for responses of PSII maximum photochemical yield and pigment profile has demonstrated that P. belizeanum is extremely light sensitive. The pool of photoprotective pigments (diadinoxanthin and dinoxanthin) and peridinin was not able to regulate the excessive light-absorption at high I0-T. OA synthesis in cells was decoupled from optimal growth conditions, as OA overproduction was observed at high temperatures and when both temperature and irradiance were low. T-flask culture observations were consistent with preliminary assays outdoors

    Combined sterilization and fabrication of drug-loaded scaffolds using supercritical CO2 technology

    Get PDF
    The access of biodegradable scaffolds to the clinical arena is constrained by the absence of a suitable sterilization technique for the processing of advanced polymeric materials. Sterilization with supercritical CO2 (scCO2) may circumvent some technological limitations (e.g., low temperature, no chemical residues on the material), although scCO2 can plasticize the polymer depending on the processing conditions used. In this latter case, the integration of the manufacturing and sterilization processes is of particular interest to obtain sterile and customized scaffolds in a single step. In this work, scCO2 was exploited as a concomitantly foaming and sterilizing agent for the first time, developing a one-step process for the production of vancomycin-loaded poly(ε-caprolactone) (PCL) bone scaffolds. The effect of the CO2 contact time on the sterility levels of the procedure was investigated, and the sterilization efficiency was evaluated against dry spores (Bacillus stearothermophilus, Bacillus pumilus and Bacillus atrophaeus). Vancomycin-loaded PCL scaffolds had relevant sustained release profiles for the prophylaxis of infections at the grafted area, even those caused by methicillin-resistant Staphylococcus aureus (MRSA). The biological performance of the scaffolds was evaluated in vitro regarding human mesenchymal stem cells (hMSCs) attachment and growth. Finally, the biocompatibility and angiogenic response of the manufactured sterile scaffolds was assessed in ovo through chick chorioallantoic membrane (CAM) assaysThis research was funded by Xunta de Galicia [ED431C 2020/17], MICINN [PID2020-120010RB-I00], Consellería de Sanidade, Servizo Galego de Saúde, Axencia de Coñecemento en Saúde (ACIS, CT850A-G), Agencia Estatal de Investigación [AEI] and FEDER funds. V. Santos-Rosales acknowledges to Xunta de Galicia (Consellería de Cultura, Educación e Ordenación Universitaria) for a predoctoral research fellowship [ED481A-2018/014]S

    Development, Characterization, and Testing of a SiC-Based Material for Flow Channel Inserts in High-Temperature DCLL Blankets

    Get PDF
    This work has been carried out within the framework of the EUROfusion Consortium. The views and opinions expressed herein do not necessarily reflect those of the European Commission.Flow channel inserts (FCIs) are the key elements in the high-temperature dual-coolant lead-lithium blanket, since in this concept the flowing PbLi reaches temperatures near 700 °C and FCIs should provide the necessary thermal and electrical insulations to assure a safe blanket performance. In this paper, the use of a SiC-sandwich material for FCIs consisting of a porous SiC core covered by a dense chemical vapor deposition-SiC layer is studied. A fabrication procedure for porous SiC is proposed and the resulting materials are characterized in terms of thermal and electrical conductivities (the latter before and after being subjected to ionizing radiation) and flexural strength. SiC materials with a wide range of porosities are produced; in addition, preliminary results using an alternative route based on the gel-casting technique are also presented, including the fabrication of hollow samples to be part of future lab-scale FCI prototypes. Finally, to study the corrosion resistance of the material in hot PbLi, corrosion tests under static PbLi at 700 °C and under flowing PbLi at 10 cm/s and 550 °C, with and without a 1.8-2T magnetic field, were performed to materials coated with a 200-400- μm -thick dense SiC layer, obtaining promising results.Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    Sterile and dual-porous aerogels scaffolds obtained through a multistep supercritical CO2-based approach

    Get PDF
    Aerogels from natural polymers are endowed with attractive textural and biological properties for biomedical applications due to their high open mesoporosity, low density, and reduced toxicity. Nevertheless, the lack of macroporosity in the aerogel structure and of a sterilization method suitable for these materials restrict their use for regenerative medicine purposes and prompt the research on getting ready-to-implant dual (macro + meso)porous aerogels. In this work, zein, a family of proteins present in materials for tissue engineering, was evaluated as a sacrificial porogen to obtain macroporous starch aerogels. This approach was particularly advantageous since it could be integrated in the conventional aerogel processing method without extra leaching steps. Physicochemical, morphological, and mechanical characterization were performed to study the effect of porogen zein at various proportions (0:1, 1:2, and 1:1 zein:starch weight ratio) on the properties of the obtained starch-based aerogels. From a forward-looking perspective for its clinical application, a supercritical CO2 sterilization treatment was implemented for these aerogels. The sterilization efficacy and the influence of the treatment on the aerogel final properties were evaluated mainly in terms of absence of microbial growth, cytocompatibility, as well as physicochemical, structural, and mechanical modifications.Work supported by Xunta de Galicia [ED431F 2016/010 & ED431C 2016/008], MINECO [SAF2017-83118R], AEI, FEDER and Interreg VAPOCTEP Programme [0245_IBEROS_1_E].C.A.García-González acknowledges to MINECO for a Ramón y Cajal Fellowship [RYC2014-15239]. V. Santos-Rosales acknowledges to Xunta de Galicia (Consellería de Cultura, Educación e Ordenación Universitaria) for a predoctoral research fellowship [ED481A-2018/014]. A.L. Oliveira acknowledges Portuguese National Funds from FCT—Fundação para a Ciência e a Tecnologia through Program FCT Investigator (IF/00411/2013), project SERICAMED (IF/00411/2013/CP1167) and project UID/Multi/50016/2013. Work carried out in the frame of the COST-Action “Advanced Engineering and Research of aeroGels for Environment and Life Sciences” (AERoGELS, ref. CA18125) funded by the European CommissionS

    SiC-based sandwich material for Flow Channel Inserts in DCLL blankets: Manufacturing, characterization, corrosion tests

    Get PDF
    This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.Flow Channel Inserts (FCIs) are key elements in a DCLL blanket concept for DEMO, since they provide the required thermal insulation between the He cooled structural steel and the hot liquid PbLi flowing at ≈700 °C, and the necessary electrical insulation to minimize MHD effects. In this work a SiC-based sandwich material is proposed for FCIs, consisting of a porous SiC core covered by a dense CVD-SiC layer. A method to produce the porous SiC core is presented, based on combining a starting mixture of SiC powder with a spherical carbonaceous sacrificial phase, which is removed after sintering by oxidation, in such a way that a microstructure of spherical pores is achieved. Following this technique, a porous SiC material with low thermal and electrical conductivities, but enough mechanical strength was produced. Samples were covered by a 200 μm thick CVD-SiC coating to form a SiC-sandwich material. Finally, corrosion tests under static PbLi were performed, showing that such a dense layer offers a reliable protection against static PbLi corrosion.Horizon 2020 Framework Programme 633053; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    Data on the Amphidinium Carterae Dn241EHU Isolation and Morphological and Molecular Characterization

    Get PDF
    We present the data corresponding to the isolation and morphological and molecular characterization of a strain of Amphidinium carterae, isolated in Mallorca Island waters and now deposited in the microalgae culture collection of the Plant Biology and Ecology Department of the University of the Basque Country under the reference Dn241Ehu. The morphological characterization was made using two different techniques of microscopy and the molecular characterization by using the 28S rDNA sequences of D1 and D2 domains. This strain has been used for a culture study in an indoor LED-lighted pilot-scale raceway to determine its production of carotenoids and fatty acids, "Long-term culture of the marine dinoflagellate microalga Amphidinium carterae in an indoor LED-lighted raceway photobioreactor: Production of carotenoids and fatty acids." (Molina-Miras et al., 2018) [1]. (C) 2018 The Authors. Published by Elsevier Inc.This research was funded by the Spanish Ministry of Economy and Competitiveness (CTQ2014-55888-C3-02), the European Regional Development Fund Program, and the projects PPG17/67 from the UPV/EHU and IT1040-16 from the Basque Government
    corecore