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Abstract— Flow channel inserts (FCIs) are the key elements in the 

high-temperature dual-coolant lead–lithium blanket, since in this 

concept the flowing PbLi reaches temperatures near 700 °C and 

FCIs should provide the necessary thermal and electrical insulations 

to assure a safe blanket performance. In this paper, the use of a SiC-

sandwich material for FCIs consisting of a porous SiC core covered 

by a dense chemical vapor deposition-SiC layer is studied. A 

fabrication procedure for porous SiC is proposed and the resulting 

materials are characterized in terms of thermal and electrical 

conductivities (the latter before and after being subjected to ionizing 

radiation) and flexural strength. SiC materials with a wide range of 

porosities are produced; in addition, preliminary results using an 

alternative route based on the gel-casting technique are also 

presented, including the fabrication of hollow samples to be part of 

future lab-scale FCI prototypes. Finally, to study the corrosion 

resistance of the material in hot PbLi, corrosion tests under static 

PbLi at 700 °C and under flowing PbLi at ∼10 cm/s and 550 °C, with 

and without a 1.8-2T magnetic field, were performed to materials 

coated with a 200–400-µm-thick dense SiC layer, obtaining 

promising results. 
 

Index Terms— Corrosion by PbLi, dual-coolant lead– lithium 
(DCLL) blanket, electrical conductivity, flow channel insert 
(FCI), porous SiC, thermal conductivity. 

 
I. INTRODUCTION 

 
The dual-coolant lead–lithium (DCLL) breeding blanket is 

being investigated as a candidate for DEMO, where an 

important requirement will be to provide the highest possible 

efficiency in converting the energy coming out from the 

burning plasma to electricity while achieving tritium self-

sufficiency [1]. The DCLL principle is based on the use of an 

eutectic PbLi alloy in liquid state acting as breeder and 

coolant, flowing through long channels while heating up to 
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high temperatures. A low-temperature version of the DCLL 

blanket is currently being designed at CIEMAT [2], where the 

PbLi operates at temperatures lower than ∼550 °C; the 

potentiality to elevate the PbLi operating temperature up to 

∼700 °C with the consequent increase of efficiency in the 

power conversion system makes the DCLL an interesting 

concept for the future [1], although high-temperature 

materials must be developed and tested to face this concept.  
In the DCLL blanket, the liquid PbLi will be in direct 

contact with the blanket structure, which is expected to be 

made of a reduced activation ferritic martensitic (RAFM) steel 

like EUROFER; to assure the corrosion stability against hot 

PbLi it is thus crucial to ensure a reliable operation of all 

materials in direct contact with it. The corrosion behavior 

against PbLi of RAFM steels is strongly dependent on the 

temperature and the flow characteristics of the PbLi [3], [4]. 

Although the experimental data regarding the corrosion rate of 

RAFM in flowing PbLi differ in a wide range, corrosion issues 

are supposed to appear at temperatures near 450–550 °C; 

besides, the presence of a magnetic field may affect severely 

the corrosion rate [4]–[6]. Therefore, to assure that the steel is 

maintained at a temperature at which severe corrosion issues 

are avoided, in a high-temperature DCLL, the PbLi should 

present a sufficient thermal insulation with respect to the 

blanket structure. In addition, to reduce magnetohydrody-

namic (MHD) effects that may affect the flow velocity and the 

heat transfer, the PbLi flow should be also electrically 

decoupled from the conducting steel. Studies and experimental 

tests under relevant conditions must be performed to assure 

the correct performance of all components.  
The blanket components responsible for the thermal and 

electrical insulation are key element in the DCLL design, 

especially in the high-temperature concept, and are called flow 

channel inserts (FCIs). FCIs are typically designed as hollow 

square channels of a few millimeter thick, containing the hot 

flowing PbLi and being separated from the RAFM steel wall by a 

thin gap also filled with PbLi. In the frame-work of the low-

temperature DCLL design, FCI prototypes made of a steel–

alumina–steel sandwich material are being tested [2]. In a high-

temperature approach, however, additional challenges must be 

overcome regarding the FCI material, especially concerning the 

corrosion phenomena and the ther-mal stresses that will be 

present in the channels due to the 
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considerably high thermal gradient across its walls. For these 

reasons, silicon carbide (SiC) is considered as a candidate for 

FCIs in a more advanced high-temperature DCLL approach, 

due to its good behavior in high radiation environments, its 

chemical stability under PbLi, and its high mechanical 

strength. However, the relatively high thermal and electrical 

conductivities of this ceramic require the development of a 

low-conductivity SiC material. The insulation requirements of 

FCIs depend on their design parameters, such as its projected 

thickness and shape, as well as on other aspects like the PbLi 

flow velocity profile; all these dependencies are being studied 

and discussed in several works. In the analysis of the technical 

challenges on the pathway to DEMO made by Abdou et al. 

[7], the requirement for effective FCI performance in terms of 

thermal conductivity is considered in the range 1–5 W/(m · K) 

and in the electrical conductivity of 1–10 S/m; in the review of 

the DCLL status made by Smolentsev et al. [8], the most 

restrictive goal regarding the FCIs of the inboard blanket is to 

achieve a thermal conductivity of 1–2 W/(m · K) and an 

electrical conductivity of about 1 S/m. Besides, recent studies 

like the one presented by Chen et al. [9] show the dependence 

between the FCI design and the MHD effects or the heat 

transfer profile, while the thickness of FCIs has a significant 

influence. In this paper [9], the authors suggest a 5-mm FCI, 

assigning them a thermal conductivity of 8 W/(m · K) and a 

considerably low electrical conductivity of 0.0001 S/m. The 

results pointed out by the different studies are consistent with  
a previous study presented by Soto et al. [10], where a ∼5-

mm FCI with a thermal conductivity near 7 W/m · K is 

suggested as a possible option. Essentially, it can be 

concluded that research and development efforts must be done 

to develop a low conductivity, high resistant SiC material with 

a wide enough design window to be consistent with the 

blanket requirements. This material has to be characterized 

under relevant conditions, and its manufacturing possibilities 

have to be taken into account.  
Together with the development of SiC/SiC composites [11], 

other potential candidates for FCIs are SiC-sandwich materi-als, 

based in a core of porous SiC covered by a dense SiC coat-ing 

typically produced by chemical vapor deposition (CVD). 

Following this concept, foam-based SiC FCI prototypes have 

been produced by Ultramet, tested in UCLA using the MaPLE 

facility and analyzed at CIEMAT [12]–[14]; in this material, a 

highly porous SiC foam infiltrated with silica aerogel is covered 

by a CVD-SiC coating of about 1 mm thickness.  
In this paper, a different SiC-sandwich material is presented, 

based on an alternative production method of porous SiC. 

Following this method, materials with a wide range of porosi-ties 

and hence of properties can be produced; the fabrication process, 

as well as the properties of the material obtained, is shown in 

Section II. Porous SiC samples produced by this method have 

been also coated with a dense CVD-SiC layer with thicknesses 

between ∼200–400 µm; such a thickness has been chosen to 

study if it is enough to provide protection against PbLi corrosion 

while reducing the high mechanical stresses that seem to 

concentrate in this dense layer, according to the results presented 

in the previous work mentioned before [10]. The coating process 

has been performed at Archer 

 

Technicoat Ltd., U.K. To determine the insulating properties 

of the material, its thermal and electrical conductivities have 

been studied; in the latter case, measurements have been also 

performed after subjecting the samples to ionizing radiation, 

using a 2 MeV Van de Graaff electron accelerator at 

CIEMAT. These results are also presented in Section II. 

Furthermore, to study the viability of a method which allows 

the fabrication of hollow samples of the required size and 

shape for FCIs, an adaptation of the fabrication procedure to 

the gel-casting technique is being studied; preliminary results 

obtained by this method are presented in Section III.  
To characterize the material’s behavior against hot PbLi 

corrosion, two different experiments have been conducted. 

First, porous samples coated with a ∼200-µm CVD-SiC layer 

were tested under static PbLi at 700 °C for 1000 h [15]. A 

second corrosion experiment has been recently performed, 

testing a new batch of coated samples under flowing PbLi at 

∼10 cm/s and 550 °C for 850 h; in order to study the possible 

influence of the presence of a magnetic field in the corrosion 

phenomena, some samples were subjected to a 1.8–2 T 

magnetic field during the experiment. The results of these 

corrosion tests are presented in Section IV. The mentioned 

experiments have been performed using lab-scale flat 

samples; in the future, further tests will be performed with 

hollow lab-size FCI prototypes. 
 

II. POROUS SIC PRODUCTION  
A. Experimental Procedure  

The proposed production method of porous SiC is based on 

the sacrificial template technique, widely used in the fabrica-

tion of porous ceramics [16]. In this procedure, the material is 

obtained from a powder mixture to which a sacrificial phase is 

added, being this phase later removed leaving pores in the 

structure.  
In this paper, SiC powder (Superior Graphite, 0.3 µm) 

together with 1.5 wt.% Al2O3 (0.4 µm) and 1 wt.% Y2O3 (1 

µm) powders were used as initial powders, the last two acting 
as sintering additives. Spherical graphite particles derived 

from mesocarbon microbeads (MCMB, 15 µm) were also 
added to the mixture as sacrificial phase in quantities ranging 

from 0 to 22 wt.%. The sintering additives together with the 

SiC powder and 3 wt.% of an aqueous polymer as binder 

agent were mixed in ethanol for 18 h, being the MCMB added 
afterward to the solution and mixed for another 30 min. With 

the resulting blend, samples with the required geometries were 

produced by uniaxial pressing at 100 MPa. The green 

compacts were then sintered at 1900 °C for 30 min. In order to 

burn out the carbonaceous sacrificial phase, the sintered 

samples were subjected to an oxidation treatment at 700 °C 

for 10 h.  
The porosity of the resulting samples was calculated from the 

ratio of its geometrical and theoretical densities, the latter one 

being determined by the rule of mixtures. Microstruc-ture was 

studied by field emission gun scanning electron microscopy 

(FESEM) and energy dispersive X-ray spec-troscopy (EDS). 

Thermal conductivity as a function of temper-ature was 

determined from the specific heat capacity obtained from [17], 

density and thermal diffusivity of the samples 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Porosity of the final material as a function of its initial amount of 

sacrificial phase (error bars are showed only for deviations ≥1%). 
 
measured by the laser flash method. Electrical conductivity 
measurements were performed before and after irradiation with 

1.8 MeV electrons up to 140 MGy (2·10
−5

 dpa). Flexural 

strength was determined at room temperature by three-point 
bending tests using four samples for each condition. 
 
B. Results and Characterization  

In Fig. 1, the final porosity of the samples as a function of 

its initial amount of MCMB (carbonaceous sacrificial phase) 

is shown for five different compositions (15%, 18%, 20%, and 

22% of initial MCMB, along with the material fabricated 

without MCMB as reference). The final porosity increases 

with increasing sacrificial phase content, being the sintering 

process less effective in the samples with high MCMB 

content; in this material, the porosity increases in a more 

severe way, showing rather an exponential relationship with 

the amount of sacrificial phase.  
The microstructure of materials with 35%, 40%, and 55% 

porosity is shown in Fig. 2(a). The spherical pores are formed by 

burning out the sacrificial phase; a reduction of the sintering 

grade with increasing MCMB content can be observed. This 

effect causes residual porosity in the SiC matrix, detrimental to 

the mechanical strength. In Fig. 2(b), details of the microstruc-

ture of the pores and of the surrounding SiC matrix can be seen in 

a sample produced with 18% initial MCMB, resulting in a final 

porosity near 40%.  
In Fig. 3, the thermal conductivity as a function of tempera-

ture of samples with different porosities (6%, 36%, and 43%) 

can be seen. As expected, the thermal conductivity decreases 

with temperature and with porosity. As the planned operation 

temperature of FCIs in the high-temperature DCLL is near 

700 °C, the thermal conductivity at this temperature of SiC 

samples with different porosities is shown in Fig. 4. The 

thermal conductivity of the material decreases exponentially 

with porosity, being the most interesting materials for FCIs in 

terms of thermal insulation those with porosities above ∼40%, 

as they correspond to the required thermal conductivity of <10 

W/(m · K) at 700 °C determined in [10].  
The electrical conductivity versus the inverse of temperature of 

three different SiC materials can be seen in Fig. 5. Two porous 

samples with 34% and 50% porosity were measured; 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. (a) Low magnification FESEM micrographs of samples produced 
with: 1) 15% initial MCMB (final porosity 35%); 2) 18% initial MCMB (final 
porosity 40%); and 3) 22% initial MCMB (final porosity 52%). (b) 

Microstructure of the pores in a 40% porous sample.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Thermal conductivity as a function of temperature of samples with 
different porosities (6%, 36%, and 43%). 

 

also, the electrical conductivity of a SiC-sandwich material, 

whose microstructure can be seen at Fig. 6, is presented. This 

sandwich sample consists of a porous core of 34% porosity 

and ∼2.5 mm thickness covered with a dense CVD-SiC 

coating of ∼230–300 µm thickness; the sides of this sample 

remain uncoated to measure the through thickness 

conductivity. The thickness of the other two measured porous 

samples (without coating) was 2.5 mm as well. The 

conductivity values of the samples after electron radiation are 

also shown; the coated sample and those with a 34% porous 

core were subjected to a dose of 144 MGy, while 23 MGy 

were applied to the 50% porous sample. The values of the 

electrical conductivity of each sample at the highest 

temperature tested, 550 °C, are shown in Table I.  
As can be seen, porosity has a great influence on the electrical 

conductivity, with values several orders of magnitude 



 

 

TABLE I   
ELECTRICAL CONDUCTIVITIES AT 550 °C BEFORE  

AND AFTER IRRADIATION  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Thermal conductivity at 700 °C as a function of porosity of SiC 
materials with different porosities.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5. Electrical conductivity versus the inverse of temperature of three 

different samples, before and after irradiation with 1.8 MeV electrons. Two 
porous samples (with 34% and 50% porosity) and a coated SiC-sandwich 
sample (formed by a porous core of 34% porosity covered by a dense CVD-
SiC layer of 230–300 µm thick) are shown.  
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6. FESEM micrographs of the coated sample whose electrical conduc-

tivity are shown in Fig. 5 and Table I. The dense coating covered the top and 

bottom of the sample (the sides remain uncoated to measure the conductivity 

through the thickness, avoiding short-circuits) having a thickness between 

∼230–300 µm. 

 

higher in the 34% porous sample compared to the 50% one. 

The electrical conductivity of the coated material with a 34% 

porous core is also higher than the one of the 34% uncoated 

porous material, although the width of the porous layers of 

both materials was the same. Similar conductivities would be 

 
 
 
 
 
 
 
 
 
 

 
Fig. 7. Flexural strength versus porosity. 

 

expected, taking into account that the electrical conductivity of 

the dense SiC is significantly larger than the one of the porous 

SiC, which together with the reduced thickness of the coating 

should have small impact on the overall through thickness con-

ductivity of the sandwich material. This unexpected result may 

indicate that changes occur in the porous SiC during the CVD 

treatment, inducing an increase in its electrical conductivity; this 

effect should be confirmed with further measurements. Regarding 

the influence of ionizing radiation, an increase in the electrical 

conductivity after irradiation is observed in all samples; 

nevertheless, the greatest value measured is near 1 S/m, which 

would fit the electrical insulation requirements.  
Finally, the flexural strength as a function of the porosity 

can be seen in Fig. 7. As expected and introduced before, the 

strength decreases considerably as the porosity increases, even 

though the important dispersions of the measured values 

prevent from drawing clear conclusions. Obtaining different 

values of flexural strength in samples with the same com-

position is attributed to the presence of defects like cracks; the 

uniaxial pressing step contributes considerably to their 

appearance.  
The highest dispersion was obtained in the samples pressed 

without sacrificial phase, which are those presenting the high-est 

difficulties in the compaction step due to the absence of the 

lubricant effect provided by the presence of graphite. The results 

of the mentioned previous work [10], where the distribution of 

the stresses caused by the thermal gradient across the FCI were 

studied, showed that, in a SiC-sandwich FCI like the one 

proposed, the highest stresses would appear in the dense coating, 

being the stresses supported by the porous 



 

core one order of magnitude lower. According to this paper, 

the flexural strength of the porous materials tested would be 

enough to support the stresses present in the core of the FCI; 

nevertheless, further work should be done in order to assure 

the production of a material free of defects, being also 

desirable to increase the strength of the highly porous 

materials to assure a safe operation. 

 
III. PRODUCTION OF POROUS SIC BY THE GEL-CASTING 

TECHNIQUE: PRELIMINARY RESULTS  
The consolidation techniques commonly used in powder 

metallurgy imply limitations, like the relatively reduced size of 

the samples that can be manufactured; also, techniques such as 

uniaxial pressing can easily lead to the presence of defects like 

cracks in the samples, being this, especially true in the 

manufacturing of hard, brittle ceramics such as SiC. These 

problems added up to its hard machinability once sintered and the 

impossibility to manufacture it in green state due to the poor 

density of the green samples produced by pressing has led to an 

increased interest in the development of new methods for 

producing high-quality green ceramics, avoiding the pressing 

step. In the case of the production of FCIs, where the fabrication 

of complex shapes with a relatively large size will be needed, 

these alternative methods are especially interesting, as they could 

allow the manufacturing of samples with no limitations regarding 

size or geometry.  
One of the promising methods is gel casting, which is based on 

the dispersion of the initial ceramic powders in an aqueous 

monomer solution to form a slurry, that is, subsequently gelled 

inside a mold. After unmolding and eliminating the aqueous 

medium by drying the sample, the result is a material with 

homogenous composition and density, containing a certain 

amount of polymer similar to the amount of binder that is 

commonly used in pressed ceramics [18]. The principal 

advantages of this method are its reduced cost, the high strength 

of the produced green samples, and its capability for industrial 

implementation, being possible to use it for almost all sizes 

allowing complex geometries. However, key aspects of the 

process must be well optimized to take full advantage of the 

method, like the use of high solid content suspensions with an 

adequately low viscosity, to properly eliminate the trapped air of 

the suspension before gelation, or to successfully control the 

dying step avoiding internal stresses in the part; these aspects, 

among others, are well summarized in [19].  
In order to produce simple hollow square FCI proto-types, 

first in lab scale, with the possibility of increasing their size or 

vary their shape in the future, an adapta-tion of the procedure 

presented in Section II incorporating the gel-casting method 

for the porous SiC production is being currently studied. The 

first hollow samples, together with flat samples of different 

geometries, have been pro-duced by using acrylamide (AM) 

as the main monomer and N,N ,-methylenebisacrylamide 

(MBAM) as the cross linker. 
 

A powder mixture containing SiC powder, 20 wt.% of 

MCMB and 2.5 wt.% of sintering additives (Al2O3 and Y2O3 

in a 3:2 ratio) was added to a premix of the monomers in 
water (the quantities used were 10 wt.% of AM and 5 wt.% of 
MBAM with respect to the amount of water). To trigger the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8. FESEM micrographs of the material produced by the gel-casting 
method (final material; after sintering and oxidation).  
 
 
 
 
 
 
 
 

 
Fig. 9. Hollow porous SiC channels produced by the gel-casting method (final 
material; after sintering and oxidation). 

 
TABLE II  

PROPERTIES OF THE MATERIAL PRODUCED BY GEL CASTING  
 
 
 
 
 

 

gelation reaction, N,N,N,N-tetramethylethylenediamine was 

used as a catalyst, together with a 5 wt.% aqueous solution of 

ammonium peroxydisulfate as initiator. The slurries were 

subjected to vacuum during a few seconds to remove the air 

trapped in the suspension, and then casted; when the gelation 

was completed, samples were unmolded and dried at room 

temperature. The next steps of the process, i.e., sintering and 

oxidation, were performed in the same way as in the 

traditional route previously presented.  
The porosity and the flexural strength of the final material 

(using in the powder mixture a solid content of 42 vol.%) are 

presented in Table II, while its microstructure can be seen in 

Fig. 8. The thermal conductivity of the material, which 

depends mainly on the amount of porosity, can be deduced 

from the relationship of Fig. 4 [∼8 W/(m · K)]. In Fig. 9, 

hollow square samples produced to become the core of future 

SiC-sandwich lab-size FCI prototypes are shown. The prop-

erties obtained in this gel-casted material are quite similar to 

those of the uniaxially pressed one with the same amount of 

initial MCMB (42% porosity with a strength of 84 ± 31 MPa 

in the pressed samples versus the 44% and 79 ± 11 MPa 

obtained in the gel-casted ones). No cracks were detected in 

the gel-casted samples; however, additional pores of a greater 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10. Samples after the corrosion experiment under static PbLi. (a) In the 
experiment assembly. (b) Aspect of two samples, with PbLi adhered to the 
surface. (c) Cross sections of cut samples, where the inner porous SiC can be 

seen. 

 

size than desired (∼100 µm) were observed, caused by the 

trapped air not adequately removed in the degassing step. The 

additional porosity measured in this samples is attributed to 

the presence of these undesired pores, whose relatively large 

size deteriorate the flexural strength; the deairing process will 

be optimized in the future to avoid this effect. Other important 

elements for the optimum performance of the gel-casting 

method, such as the use of an adequate amount of dispersant 

to permit high solid contents while maintaining a low 

viscosity, is also still not incorporated to the process used in 

this paper, so that there is a large margin for improvement of 

the final properties of the material.  
These first results show that the gel-casting technique is a 

promising method for the fabrication of ceramic FCIs, being 

possible to be used in the fabrication of more complex shapes 

by the design of proper molds. 
 

IV. CORROSION EXPERIMENTS  
A crucial issue in the DCLL and FCIs design, especially 

regarding the high-temperature concept, is to test the materials 

that will be directly in contact with the hot flowing PbLi to 

assure that no corrosion phenomena would be altering the 

performance of the components. To characterize the behavior 

of the produced SiC under hot PbLi, corrosion experiments 

under relevant conditions have been performed at the Institute 

of Physics, University of Latvia (IPUL) with lab-scale flat 

samples, consisting of a porous SiC core (fabricated by the 

traditional route including uniaxial pressing) covered by a 

CVD-SiC dense coating. New experiments with lab-size hol-

low FCI prototypes are in preparation. 

 

A. Test Under Static PbLi  
For the first corrosion experiment, 14 × 14 × 5 mm

3
 porous 

SiC samples with a porosity around 50% were covered with a 

dense CVD-SiC coating of ∼200 µm thickness. Six samples 

were tested, being partially immersed in static PbLi at 700 °C 

for 1000 h; photographs of some of the samples after finishing 

the test are shown in Fig. 10.  
After the experiment, samples were cut and its inside was 

studied by FESEM, EDS, and X-ray diffraction. No lead was 

detected inside them and no significant reduction of 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11. Cross-sectional FESEM micrographs of the inside of samples after 
the corrosion experiment under static PbLi.  
 
 
 
 
 
 
 
 
 
 
 
Fig. 12. (a) Experimental setup at the PbLi loop of IPUL. (b) Test channel 
installed between the magnet poles. 

 
the thickness of the dense CVD-SiC coating was found (as 

can be observed in the micrographs showed in Fig. 10), 

although some damages of the dense coating occurred during 

dismantling the samples after the experiment. Details of these 

results can be found in [15]. 

 
B. Test Under Flowing PbLi  

For this second experiment, a new batch of porous SiC 

samples with porosities near 40% was coated with a CVD-SiC 

layer. In this case, the thickness of the coating varied from 

∼200 to 400 µm, due to inaccuracies in the CVD procedure; 

these problems should be solved to assure the greatest 

possible accuracy in the thickness of the coating in the future 

processes. In this experiment, 11 samples were tested; eight of 

them were subjected to a 1.8–2 T magnetic field throughout 

the test, while three remained outside the magnetic influence 

as control samples. The PbLi was flowing at ∼10 cm/s and 

550 °C, being the duration of the experiment 850 h. A of the 

experimental setup at the PbLi loop of IPUL can be seen in 

Fig. 12; the samples subjected to the influence of the magnetic 

field were located in the gap between the magnetic poles to 

assure a completely uniform field.  
Photographs of the samples after the test can be seen in Fig. 

13. Surface damages were detected in two samples (marked 

with ∗  in Fig. 13), consisting of a partial detachment of the 

dense layer that occurred during the dismantling of 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 13. Samples after the corrosion test under flowing PbLi. (a) In the 
experiment assembly. (b) Samples outside the magnetic field. (c) Samples 
subjected to the magnetic field. Samples marked with ∗  presented damages in 

the surface.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 14. Cross-sectional FESEM micrographs of the inside of a sample after 

the corrosion test under flowing PbLi; sample located outside the magnetic 

field, with a ∼250-µm dense coating.  

 

these detachments is unknown; severe temperature changes 

could have affected the integrity of some dense coatings 

during their extraction of the test assembly, or other followed 

procedures could have caused damages in the samples. More 

work is required to identify the problem and to assure that 

these conditions would not be repeated in service.  
During the test, no failure happened in any case, and no 

weight gain was observed in any of the samples. Micrographs 

of the inside of a sample that remained outside the magnetic 

field can be seen in Fig. 14; no cracks or failures were 

detected in the dense coating, which provided protection 

against PbLi ingress. Likewise, micrographs of a sample 

subjected to the magnetic field are shown in Fig. 15. As can 

be observed, no substantial differences were found between 

the Hartmann and side walls, remaining the whole dense 

coating undamaged also in this series of samples. 
 

V. CONCLUSION 
 

The following conclusions can be drawn from the presented 
results. 
 

1) Porous SiC with a variety of properties can be produced 

by the procedure followed in this paper, being possible 

to adjust the porosity according to the required needs. A 

SiC material with reduced thermal and electrical 

conductivities and sufficient mechanical strength can be 

fabricated by adding the required amount of sacrificial 

carbon phase.  
2) A fully dense, free of defects CVD-SiC coating offers a 

reliable protection against hot PbLi corrosion. No 

remarkable effect of the application of a magnetic field 

on the corrosion behavior has been observed.  
3) The gel-casting method is a promising route for the 

fabrication of ceramic for FCIs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 15. Cross-sectional FEGSEM micrographs of the inside of a sample after 

the corrosion test under flowing PbLi; sample subjected to a magnetic field of 

1.8T throughout it, being (a) Hartmann walls and (b) side walls. Dense 

coating of ∼400 µm thick. 

 

the experiment. The surface was examined by FEGSEM and 

EDS analysis were performed, confirming that no Pb was 

present in the zones without dense coating. The reason for 
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