1,968 research outputs found

    Chassis design for an autonomous electric vehicle for the city of Cartagena de Indias (Elevated Autonomous Transport System-Caribbean railway) using finite elements and the Shell technique

    Get PDF
    SciVal Topics Metrics Abstract This document contains the chassis design for an autonomous electric vehicle. First, a fatigue failure analysis should be done to the underside of the chassis under fluctuating loads. Subsequently, the methodology of the shell technique or plate technique is applied to make the structural analysis by finite elements of the complete structure. The results show a satisfactory design that meets all the criteria used. © 2020 IEEE

    Preconditioned iterative methods for convection diffusion and related boundary value problems

    Get PDF
    AbstractWe develop and analyze preconditioners for the iterative solution of the system of equations arising from the discretization of multi-dimensional singularity perturbed boundary value problems. This includes a class of convection diffusion models. The choice of preconditioner is crucial for the efficient solution of the system of equations. In particular, it is necessary to choose a preconditioner that substantially reduces the condition number κ both for small grid size h and for large values of the parameter K multiplying the convection terms. A class of preconditioners is analyzed that is inexpensive to implement and for which κ = 0(1) as h→0 and κ = (1 + K12) as K → ∞ for some convection diffusion problems with positive definite symmetric part. This result is then used to develop an algorithm with work estimate 0(1 + K12as K → ∞ for a more general class of convection diffusion problems including those with indefinite symmetric part. Numerical experiments using a symmetric multigrid preconditioner demonstrate the effectiveness of the numerical method even for large problems

    Surface shape resonances in lamellar metallic gratings

    Full text link
    The specular reflectivity of lamellar gratings of gold with grooves 0.5 microns wide separated by a distance of 3.5 microns was measured on the 2000 cm1^{-1} - 7000 cm1^{-1} spectral range for p-polarized light. For the first time, experimental evidence of the excitation of electromagnetic surface shape resonances for optical frequencies is given. In these resonances the electric field is highly localized inside the grooves and is almost zero in all other regions. For grooves of depth equal to 0.6 microns, we have analyzed one of these modes whose wavelength (3.3 microns) is much greater than the lateral dimension of the grooves.Comment: 4 pages (LaTex), 5 postscript figures, to be published in Physical Review Letter

    Quantum entanglement patterns in the structure of atomic nuclei within the nuclear shell model

    Full text link
    Quantum entanglement offers a unique perspective into the underlying structure of strongly-correlated systems such as atomic nuclei. In this paper, we use quantum information tools to analyze the structure of light and medium mass berillyum, oxygen, neon and calcium isotopes within the nuclear shell model. We use different entanglement metrics, including single-orbital entanglement, mutual information, and von Neumann entropies for different equipartitions of the shell-model valence space and identify mode/entanglement patterns related to the energy, angular momentum and isospin of the nuclear single-particle orbitals. We observe that the single-orbital entanglement is directly related to the number of valence nucleons and the energy structure of the shell, while the mutual information highlights signatures of proton-proton and neutron-neutron pairing. Proton and neutron orbitals are weakly entangled by all measures, and in fact have the lowest von Neumann entropies among all possible equipartitions of the valence space. In contrast, orbitals with opposite angular momentum projection have relatively large entropies. This analysis provides a guide for designing more efficient quantum algorithms for the noisy intermediate-scale quantum era.Comment: Submitted to EPJA Topical Issue "Quantum computing in low-energy nuclear theory

    Aspectos epidemiológicos y clinicos del Colangio carcinoma en el Hospital Nacional Edgardo Rebagliati Martins - EsSalud, 2006 -2012: Epidemiological and clinical aspects of Cholangio carcinoma in the National Hospital Edgardo Rebagliati Martins EsSalud, 2006 - 2012

    Get PDF
    Objetivo. Determinar el comportamiento epidemiológico y clínico del Colangiocarcinoma (CCA) en un hospital referencial como el Hospital Nacional Edgardo Rebagliati Martins EsSalud en el periodo del 2006 al 2012 en Lima-Perú. Materiales y m´étodos. Se realizó un estudio descriptivo, retrospectivo longitudinal en base a la recopilación de datos registrados en las historias clínicas de los pacientes del Hospital Nacional Edgardo Rebagliati Martins, cuyo diagnóstico definitivo se haya establecido bajo la codificación internacional CIE 10 con el código 24.0 o también conocido como Neoplasia Maligana de Vía Biliar o Colangiocarcinoma, comprendidos entre el año 2006 al 2012. El universo de estudio fue de 90 pacientes (2006-2012) de los cuales se calculó como tamañno de muestra válido a 60 de ellos que cumplian con los criterios de inclusión y exclusión. Resultados. En relación a los resultados, muchos de los aspectos epidemiológicos difieren de lo estudiado en otras poblaciones, sobretodo las pertenientes al continente Asiatico, donde se pueden encontrar asociadas factores de riesgo como Colangitis Esclerosante Primaria o la presencia de parásitos propios de la localidad. Así también la incidencia, prevalencia y distribución por grupo etáreo y por género, mortalidad y tiempo de sobrevida varían en relación a características diagnósticas y estudios realizados previamente en países como Japón, China e Israel. Conclusiones. Se concluye que el Colangiocarcinoma es una neoplasia de via bibliar con una incidencia de 1 caso nuevo / 100,000 habitantes en nuestro país. Se describe una predominancia de aparición en personas de sexo femenino y ello se incrementa a partir de la sexta década de la vida. En nuestra población se asocia a antecedentes de litiasis vesicular, hepatitis viral y colecistectomía previa en su mayoria. Clinicamente el CCI se asocia más a disminución de peso, mientras que en el CCE predomina la ictericia. La mayoria de pacientes son diagnósticados en estadios avanzados III y IV, presentándose una mortalidad elevada y un tiempo de sobrevida de 1 mes y un m´´aximo de 73 meses

    A cooperative game approach to a production planning problem

    Get PDF
    This paper deals with a production planning problem formulated as a Mixed Integer Linear Programming (MILP) model that has a competition component, given that the manufacturers are willing to produce as much products as they can in order to fulfil the market’s needs. This corresponds to a typical game theoretic problem applied to the productive sector, where a global optimization problem involves production planning in order to maximize the utilities for the different firms that manufacture the same type of products and compete in the market. This problem has been approached as a cooperative game, which involves a possible cooperation scheme among the manufacturers. The general problem was approached by Owen (1995) as the “production game” and the core was considered. This paper identifies the cooperative game theoretic model for the production planning MILP optimization problem and Shapley Value was chosen as the solution approach. The results obtained indicate the importance of cooperating among competitors. Moreover, this leads to economic strategies for small manufacturing companies that wish to survive in a competitive environment

    Evolutionary diversity peaks at mid-elevations along an Amazon-to-Andes elevation gradient

    Get PDF
    Elevation gradients present enigmatic diversity patterns, with trends often dependent on the dimension of diversity considered. However, focus is often on patterns of taxonomic diversity and interactions between diversity gradients and evolutionary factors, such as lineage age, are poorly understood. We combine forest census data with a genus level phylogeny representing tree ferns, gymnosperms, angiosperms, and an evolutionary depth of 382 million years, to investigate taxonomic and evolutionary diversity patterns across a long tropical montane forest elevation gradient on the Amazonian flank of the Peruvian Andes. We find that evolutionary diversity peaks at mid-elevations and contrasts with taxonomic richness, which is invariant from low to mid-elevation, but then decreases with elevation. We suggest that this trend interacts with variation in the evolutionary ages of lineages across elevation, with contrasting distribution trends between younger and older lineages. For example, while 53% of young lineages (originated by 10 million years ago) occur only below ∼1,750 m asl, just 13% of old lineages (originated by 110 million years ago) are restricted to below ∼1,750 m asl. Overall our results support an Environmental Crossroads hypothesis, whereby a mid-gradient mingling of distinct floras creates an evolutionary diversity in mid-elevation Andean forests that rivals that of the Amazonian lowlands

    A mutation in the melon Vacuolar Protein Sorting 41prevents systemic infection of Cucumber mosaic virus

    Get PDF
    [EN] In the melon exotic accession PI 161375, the gene cmv1, confers recessive resistance to Cucumber mosaic virus (CMV) strains of subgroup II. cmv1 prevents the systemic infection by restricting the virus to the bundle sheath cells and impeding viral loading to the phloem. Here we report the fine mapping and cloning of cmv1. Screening of an F2 population reduced the cmv1 region to a 132 Kb interval that includes a Vacuolar Protein Sorting 41 gene. CmVPS41 is conserved among plants, animals and yeast and is required for post-Golgi vesicle trafficking towards the vacuole. We have validated CmVPS41 as the gene responsible for the resistance, both by generating CMV susceptible transgenic melon plants, expressing the susceptible allele in the resistant cultivar and by characterizing CmVPS41 TILLING mutants with reduced susceptibility to CMV. Finally, a core collection of 52 melon accessions allowed us to identify a single amino acid substitution (L348R) as the only polymorphism associated with the resistant phenotype. CmVPS41 is the first natural recessive resistance gene found to be involved in viral transport and its cellular function suggests that CMV might use CmVPS41 for its own transport towards the phloem.The TILLING platform is supported by the Program Saclay Plant Sciences (SPS, ANR-10-LABX-40) and the European Research Council (ERC-SEXYPARTH). This work was supported by grants AGL2009-12698-C02-01 and AGL2012-40130-C02-01 from the Spanish Ministry of Science and Innovation, the Spanish Ministry of Econom and Competitiveness, through the "Severo Ochoa Programme for Centres of Excellence in R&D" 2016-2019 (SEV-2015-0533)" and the CERCA Programme/Generalitat de Catalunya.Giner, A.; Pascual, L.; Bourgeois, M.; Gyetvai, G.; Rios, P.; Picó Sirvent, MB.; Troadec, C.... (2017). A mutation in the melon Vacuolar Protein Sorting 41prevents systemic infection of Cucumber mosaic virus. Scientific Reports. 7:1-12. https://doi.org/10.1038/s41598-017-10783-31127Anderson, P. K. et al. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends in Ecology & Evolution 19, 535–544, doi: 10.1016/j.tree.2004.07.021 (2004).Nicaise, V. Crop immunity against viruses: outcomes and future challenges. Frontiers in Plant Science 5, 660, doi: 10.3389/fpls.2014.00660 (2014).Kang, B.-C., Yeam, I. & Jahn, M. Genetics of plant virus resistance. Annual Review of Phytopathology 43, 581–621, doi: 10.1146/annurev.phyto.43.011205.141140 (2005).Fraser, R. S. S. The genetics of plant-virus interactions: implications for plant breeding. Euphytica 63, 175–185, doi: 10.1007/bf00023922 (1992).Truniger, V. & Aranda, M. Recessive resistance to plant viruses. Advances in virus research 119–159 (2009).Sanfaçon, H. Plant translationfactors and virus resistance. Viruses 7, 3392–3419, doi: 10.3390/v7072778 (2015).Yang, P. et al. PROTEIN DISULFIDE ISOMERASE LIKE 5-1 is a susceptibility factor to plant viruses. Proceedings of the National Academy of Sciences of the United States of America 111, 2104–2109, doi: 10.1073/pnas.1320362111 (2014).Ouibrahim, L. et al. Cloning of the Arabidopsis rwm1 gene for resistance to Watermelon mosaic virus points to a new function for natural virus resistance genes. The Plant Journal 79, 705–716, doi: 10.1111/tpj.12586 (2014).Rubio, M., Nicolaï, M., Caranta, C. & Palloix, A. Allele mining in the pepper gene pool provided new complementation effects between pvr2-eIF4E and pvr6-eIF(iso)4E alleles for resistance to pepper veinal mottle virus. Journal of General Virology 90, 2808–2814, doi: 10.1099/vir.0.013151-0 (2009).Ibiza, V. P., Cañizares, J. & Nuez, F. EcoTILLING in Capsicum species: searching for new virus resistances. BMC Genomics 11, 631–631, doi: 10.1186/1471-2164-11-631 (2010).Chandrasekaran, J. et al. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Molecular Plant Pathology. doi: 10.1111/mpp.12375 (2016).Rodríguez-Hernández, A. et al. Melon RNA interference (RNAi) lines silenced for Cm-eIF4E show broad virus resistance. Molecular plant pathology 13, 755–763, doi: 10.1111/j.1364-3703.2012.00785.x (2012).Edwardson, J. R. & Christie, R. G. In CRC Handbook of Viruses Infecting Legumes (eds J.R. Edwardson & R.G. Christie) 293–319 (CRC Press, 1991).Roossinck, M. J. Cucumber mosaic virus, a model for RNA virus evolution. Molecular Plant Pathology 2, 59–63 (2001).Caranta, C. et al. QTLs involved in the restriction of Cucumber mosaic virus (CMV) long-distance movement in pepper. Theor Appl Genet 104, 586–591 (2002).Valkonen, J. P. & Watanabe, K. N. Autonomous cell death, temperature sensitivity and the genetic control associated with resistance to Cucumber mosaic virus (CMV) in diploid potatoes (Solanum spp). Theor Appl Genet 99, 996–1005 (1999).Ohnishi, S. et al. Multigenic system controlling viral systemic infection determined by the interactions between Cucumber mosaic virus genes and quantitative trait loci of soybean cultivars. Phytopathology 101, 575–582, doi: 10.1094/phyto-06-10-0154 (2011).Kobori, T., Satoshi, T. & Osaki, T. Movement of Cucumber mosaic virus is restricted at the interface between mesophyll and phloem pathway in Cucumis figarei. Journal of General Plant Pathology 66, 159–166, doi: 10.1007/pl00012939 (2000).Argyris, J. M., Pujol, M., Martín-Hernández, A. M. & Garcia-Mas, J. Combined use of genetic and genomics resources to understand virus resistance and fruit quality traits in melon. Physiologia Plantarum 155, 4–11, doi: 10.1111/ppl.12323 (2015).Diaz, J. A. et al. Potential sources of resistance for melon to nonpersistently aphid-borne viruses. Plant Disease 87, 960–964 (2003).Karchi, Z., Cohen, S. & Govers, A. Inheritance of resistance to Cucumber Mosaic virus in melons. Phytopathology 65, 479–481 (1975).Risser, G., Pitrat, M. & Rode, J. C. Etude de la résistance du melon (Cucumis melo L.) au virus de la mosaïque du concombre. Ann Amél Plant 27, 509–522 (1977).Dogimont, C. et al. Identification of QTLs contributing to resistance to different strains of Cucumber mosaic cucumovirus in melon. Acta Hortic 510, 391–398 (2000).Essafi, A. et al. Dissection of the oligogenic resistance to Cucumber mosaic virus in the melon accession PI 161375. Theoretical and Applied Genetics 118, 275–284 (2009).Guiu-Aragonés, C., Díaz-Pendón, J. A. & Martín-Hernández, A. M. Four sequence positions of the movement protein of Cucumber mosaic virus determine the virulence against cmv1-mediated resistance in melon. Molecular Plant Pathology 16, 675–684, doi: 10.1111/mpp.12225 (2015).Guiu-Aragonés, C. et al. The complex resistance to Cucumber mosaic cucumovirus (CMV) in the melon accession PI 161375 is governed by one gene and at least two quantitative trait loci. Molecular Breeding 34, 351–362, doi: 10.1007/s11032-014-0038-y (2014).Guiu-Aragonés, C. et al. cmv1 is a gate for Cucumber mosaic virus transport from bundle sheath cells to phloem in melon. Mol. Plant Pathology 17, 973–984 (2016).Sanseverino, W. et al. Transposon Insertions, Structural Variations, and SNPs Contribute to the Evolution of the Melon Genome. Molecular Biology and Evolution 32, 2760–2774, doi: 10.1093/molbev/msv152 (2015).Pols, M. S., ten Brink, C., Gosavi, P., Oorschot, V. & Klumperman, J. The HOPS Proteins hVps41 and hVps39 Are Required for Homotypic and Heterotypic Late Endosome Fusion. Traffic 14, 219–232, doi: 10.1111/tra.12027 (2013).Asensio, C. S. et al. Self-assembly of VPS41 promotes sorting required for biogenesis of the regulated secretory pathway. Developmental cell 27, 425–437, doi: 10.1016/j.devcel.2013.10.007 (2013).Kolesnikova, L. et al. Vacuolar protein sorting pathway contributes to the release of Marburg virus. Journal of Virology8 3, 2327–2337, doi: 10.1128/JVI.02184-08 (2009).Nuñez-Palenius, H. G. et al. Melon Fruits: Genetic Diversity, Physiology, and Biotechnology Features. Critical Reviews in Biotechnology 28, 13–55, doi: 10.1080/07388550801891111 (2008).Castelblanque, L. et al. Improving the genetic transformation efficiency of Cucumis melo subsp. melo “Piel de Sapo” via Agrobacterium. Procedings of the IXth UECARPIA Meeting on Genetics and Breeding of Cucurbitaceae, 21-24th May, Avignon,, 627–631 (2008).Dahmani-Mardas, F. et al. Engineering melon plants with improved fruit shelf life using the TILLING approach. PLoS ONE 5, doi: 10.1371/journal.pone.0015776 (2010).Esteras, C. et al. SNP genotyping in melons: genetic variation, population structure, and linkage disequilibrium. Theoretical and Applied Genetics 126, 1285–1303, doi: 10.1007/s00122-013-2053-5 (2013).Leida, C. et al. Variability of candidate genes, genetic structure and association with sugar accumulation and climacteric behavior in a broad germplasm collection of melon (Cucumis melo L.). BMC Genetics 16, 28, doi: 10.1186/s12863-015-0183-2 (2015).Balderhaar, H. Jk & Ungermann, C. CORVET and HOPS tethering complexes – coordinators of endosome and lysosome fusion. Journal of Cell Science 126, 1307–1316, doi: 10.1242/jcs.107805 (2013).Darsow, T., Katzmann, D. J., Cowles, C. R. & Emr, S. D. Vps41p Function in the Alkaline Phosphatase Pathway Requires Homo-oligomerization and Interaction with AP-3 through Two Distinct Domains. Molecular Biology of the Cell 12, 37–51 (2001).Ostrowicz, C. W. et al. Defined subunit arrangement and Rab interactions are required for functionality of the HOPS tethering complex. Traffic 11, 1334–1346, doi: 10.1111/j.1600-0854.2010.01097.x (2010).Solinger, J. A. & Spang, A. Tethering complexes in the endocytic pathway: CORVET and HOPS. FEBS Journal 280, 2743–2757, doi: 10.1111/febs.12151 (2013).Rehling, P., Dawson, T., Katzmann, D. J. & Emr, S. D. Formation of AP-3 transport intermediates requires Vps41 function. Nature Cell Biology 1, 346–353 (1999).Niihama, M., Takemoto, N., Hashiguchi, Y., Tasaka, M. & Morita, M. T. ZIP genes encode proteininvolved inmembrane trafficking of the TGN–PVC/Vacuoles. Plant and Cell Physiology 50, 2057–2068, doi: 10.1093/pcp/pcp137 (2009).Wang, A. & Krishnaswamy, S. Eukaryotic translation initiation factor 4E-mediated recessive resistance to plant viruses and its utility in crop improvement. Molecular Plant Pathology 13, 795–803, doi: 10.1111/j.1364-3703.2012.00791.x (2012).Ruffel, S. et al. A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E). The Plant Journal 32, 1067–1075, doi: 10.1046/j.1365-313X.2002.01499.x (2002).Morosky, S., Lennemann, N. J. & Coyne, C. B. BPIFB6 regulatessecretory pathway trafficking and Enterovirus replication. Journal of Virology 90, 5098–5107, doi: 10.1128/jvi.00170-16 (2016).Serra-Soriano, M., Pallás, V. & Navarro, J. A. A model for transport of a viral membrane protein through the early secretory pathway: minimal sequence and endoplasmic reticulum lateral mobility requirements. The Plant Journal 77, 863–879, doi: 10.1111/tpj.12435 (2014).Vale-Costa, S. & Amorim, M. J. Recycling Endosomes and Viral Infection. Viruses 8, 64, doi: 10.3390/v8030064 (2016).Carette, J. E. et al. Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature 477, 340–343, doi: 10.1038/nature10348 (2011).Barajas, D., Martín, I. Fd. C., Pogany, J., Risco, C. & Nagy, P. D. Noncanonical role for the host Vps4 AAA + ATPase ESCRT protein in the formation of Tomato bushy stunt virus replicase. PLoS Pathog 10, e1004087, doi: 10.1371/journal.ppat.1004087 (2014).Richardson, L. G. L. et al. A unique N-Tterminal sequence in the Carnation Italian ringspot virus p36 replicase-associated protein interacts with the host cell ESCRT-I component Vps23. Journal of Virology 88, 6329–6344, doi: 10.1128/JVI.03840-13 (2014).Jiang, J., Patarroyo, C., Garcia Cabanillas, D., Zheng, H. & Laliberté, J.-F. The vesicle-forming 6K2 protein of Turnip mosaic virus interacts with the COPII coatomer Sec. 24a for viral systemic infection. Journal of Virology 89, 6695–6710, doi: 10.1128/jvi.00503-15 (2015).Genovés, A., Navarro, J. A. & Pallás, V. Theintra- and intercellular movement of Melon necrotic spot virus (MNSV) depends on an active secretory pathway. Molecular Plant-Microbe Interactions 23, 263–272, doi: 10.1094/MPMI-23-3-0263 (2010).Amano, M. et al. High-resolution mapping of zym, a recessive gene for Zucchini yellow mosaic virus resistance in cucumber. Theoretical and Applied Genetics 126, 2983–2993, doi: 10.1007/s00122-013-2187-5 (2013).Lewis, J. D. & Lazarowitz, S. G. Arabidopsis synaptotagmin SYTA regulates endocytosis and virus movement protein cell-to-cell transport. Proceedings of the National Academy of Sciences of the United States of America 107, 2491–2496, doi: 10.1073/pnas.0909080107 (2010).Rizzo, T. & Palukaitis, P. Construction of full-length cDNA clones of Cucumber mosaic virus RNAs 1, 2 and 3: Generation of infectious RNA transcripts. Molecular and General Genetics 122, 249–256 (1990).Zhang, L., Handa, K. & Palukaitis, P. Mapping local and systemic symptom determinants of Cucumber mosaic cucumovirus in tobacco. The Journal of General Virology 75, 3185–3191 (1994).Fukino, N., Sakata, Y., Kunihisa, M. & S., M. Characterisation of novel simple sequence repeat (SSR) markers for melon (Cucumis melo L.) and their use for genotype identification. Journal of Horticultural Science & Biotechnology 82, 330–334 (2007).Garcia-Mas, J. et al. The genome of melon (Cucumis melo L.). Proceedings of the National Academy of Sciences 109, 11872–11877, doi: 10.1073/pnas.1205415109 (2012).Untergasser, A. et al. Primer3—new capabilities and interfaces. Nucleic Acids Research 40, e115–e115, doi: 10.1093/nar/gks596 (2012).Gonzalo, M. J. et al. Simple-sequence repeat markers used in merging linkage maps of melon (Cucumis melo L.). Theor Appl Genet 110, 802–811 (2005).Doyle, J. J. & Doyle, J. L. Isolation of plant DNA from fresh tissue. Focus1 2, 13–15 (1990).Argyris, J. M. et al. Use of targeted SNP selection for an improved anchoring of the melon (Cucumis melo L.) scaffold genome assembly. BMC Genomics 16, 4, doi: 10.1186/s12864-014-1196-3 (2015).Proost, S. et al. PLAZA 3.0: an access point for plant comparative genomics. Nucleic Acids Research 43, D974–D981, doi: 10.1093/nar/gku986 (2015).Choi, Y., Sims, G. E., Murphy, S., Miller, J. R. & Chan, A. P. Predicting the Functional Effect of Amino Acid Substitutions and Indels. PLoS ONE 7, e46688, doi: 10.1371/journal.pone.0046688 (2012).Li, B. et al. Automated inference of molecular mechanisms of disease from amino acid substitutions. Bioinformatics 25, 2744–2750, doi: 10.1093/bioinformatics/btp528 (2009).Earley, K. W. et al. Gateway-compatible vectors for plant functional genomics and proteomics. The Plant Journal 45, 616–629, doi: 10.1111/j.1365-313X.2005.02617.x (2006).Gonzalez-Ibeas, D. et al. MELOGEN: an EST database for melon functional genomics. BMC Genomics 8, 306 (2007).Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Research 29, 2002–2007 (2001).Dalmais, M. et al. UTILLdb, a Pisum sativum in silico forward and reverse genetics tool. Genome Biology 9, R43–R43, doi: 10.1186/gb-2008-9-2-r43 (2008).Saladié, M. et al. Comparative transcriptional profiling analysis of developing melon (Cucumis melo L.) fruit from climacteric and non-climacteric varieties. BMC Genomics 16, 440, doi: 10.1186/s12864-015-1649-3 (2015)

    Neuro-fuzzy control for artificial pancreas: in silico development and validation

    Get PDF
    [ES] La Diabetes Mellitus Tipo 1 (DMT1) es una de las enfermedades actuales más dañinas que afectan a personas de cualquier edad incluyendo niños desde el nacimiento. Las inyecciones de insulina exógena siguen siendo el tratamiento más común para estos pacientes, sin embargo, no es el óptimo. La comunidad científica se ha esforzado en optimizar el suministro de insulina usando dispositivos electrónicos y de esta manera mejorar la esperanza de vida de los diabéticos. Existen numerosas limitaciones para que esta evolución biomédica sea realidad tales como la validación de algoritmos controladores, experimentación con dispositivos electrónicos, aplicabilidad en pacientes de diferentes edades, entre otras. Este trabajo presenta el prototipado de un controlador inteligente neuro-fuzzy en la tarjeta LAUNCHXL-F28069M de Texas Instruments para formar un esquema de hardware en el lazo (HIL). Esto es, el controlador embebido manda los datos de la tasa de suministro de insulina al computador donde se capturan por el software Uva/Padova y se integran a la simulación metabólica de pacientes diabéticos virtuales tratados con bomba de insulina. Una tarea principal del algoritmo inteligente embebido es determinar la tasa óptima de infusión insulínica para cada uno de los 30 pacientes virtuales disponibles, los cuales llevan un protocolo de comida. La novedad de este trabajo se centra en superar las limitaciones actuales a través de un primer enfoque de algoritmo de control inteligente aplicable al páncreas artificial (PA) y analizar la factibilidad de esta propuesta en la trascendencia con la edad ya que los resultados corresponden a pruebas in-silico en poblaciones de 10 adultos, 10 adolescentes y 10 niños.[EN] Type 1 Diabetes Mellitus (DMT1) is currently one of the most harmful diseases that aect people of any age, including children from birth. Exogenous insulin injections remain the most common treatment for these patients, however, it is not the optimal one. The scientific community has endeavored to optimize insulin administration using electronic devices and thus improve the diabetics life expectancy. There are numerous limitations for this biomedical evolution to become a reality such as the control algorithms validation, experimentation with electronic devices, and applicability in patients age transcendence, among others. This work presents the prototyping of a neuro-fuzzy intelligent controller on the Texas Instruments LAUNCHXL-F28069M development board to form a hardware in the loop (HIL) scheme. That is, the embedded controller sends the insulin delivery rate data to the computer where it is captured by the Uva/Padova software and integrated into the metabolic simulation of virtual diabetic patients treated with an insulin pump. The main task of the embedded intelligent algorithm is to determine the optimal insulin infusion rate for each of the 30 virtual patients who follow a meal protocol. The novelty of this work focuses on overcoming current limitations through a first intelligent control algorithm approach applicable to artificial pancreas (AP) and analyzing the feasibility of this proposal in age transcendence since the results correspond to in-silico tests in populations of 10 adults, 10 adolescents and 10 children.Rios, Y.; García-Rodríguez, J.; Sánchez, E.; Alanis, A.; Ruiz-Velázquez, E.; Pardo, A. (2020). Control neuro-fuzzy para páncreas artificial: desarrollo y validación in-silico. Revista Iberoamericana de Automática e Informática industrial. 17(4):390-400. https://doi.org/10.4995/riai.2020.13035OJS390400174Alanis, A. Y., Sanchez, E. N., Loukianov, A. G., 2007. Discrete-Time Adaptive Backstepping Nonlinear Control via High-Order Neural Networks. IEEE Transactions on Neural Networks 18 (4), 1185-1195. https://doi.org/10.1109/TNN.2007.899170American Diabetes Association, 2013. Economic costs of diabetes in the U.S. in 2012. Diabetes Care 36 (4), 1033-1046. https://doi.org/10.2337/dc12-2625Brown, J. B., Pedula, K. L., Bakst, A. W., 09 1999. The Progressive Cost of Complications in Type 2 Diabetes Mellitus. JAMA Internal Medicine 159 (16), 1873-1880.https://doi.org/10.1001/archinte.159.16.1873Centers for Disease Control and Prevention, 2017. National Diabetes Statistics Report, 2017. Estimates of Diabetes and Its Burden in the United States. National Center for Chronic Disease Prevention and Health Promotion. USA. 1 (1), 1-20.Chang, F. J., Chiang, Y. M., Chang, L. C., 2010. Multi-step-ahead neural networks for flood forecasting. Hydrological Sciences Journal 52 (1), 114-130. https://doi.org/10.1623/hysj.52.1.114Chen, P. A., Chang, L. C., Chang, F. J., 2013. Reinforced recurrent neural networks for multi-step-ahead flood forecasts. Journal of Hydrology 497 (2013), 71-79. https://doi.org/10.1016/j.jhydrol.2013.05.038Cinar, A., 2018. Artificial Pancreas Systems: An Introduction to the Special Issue. IEEE Control Systems 38 (1), 26-29. https://doi.org/10.1109/MCS.2017.2766321Control, T. D., Group, C. T. R., 1993. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. New England Journal of Medicine 329 (14), 977-986, pMID: 8366922. https://doi.org/10.1056/NEJM199309303291401Dalla Man, C., Micheletto, F., Lv, D., Breton, M., Kovatchev, B., Cobelli, C., jan 2014. The UVA/PADOVA Type 1 Diabetes Simulator. Journal of Diabetes Science and Technology 8 (1), 26-34. https://doi.org/10.1177/1932296813514502Freeman, R. A., Kokotovic, P., 2009. Robust Nonlinear Control Design, springer s Edition. Birkhäuser Boston, Boston. https://doi.org/10.1007/978-0-8176-4759-9Geman, O., Chiuchisan, I., Toderean, R., 2017. Application of adaptive neuro-fuzzy inference system for diabetes classification and prediction. In: 2017 E-Health and Bioengineering Conference (EHB). Sinaia, pp. 639-642. https://doi.org/10.1109/EHB.2017.7995505Institute of Medicine, 2005. Summary Tables, Dietary Reference Intakes. In: Press, T. N. A. (Ed.), Dietary Reference Intakes for Energy, the nation Edition. Elsevier, Washington D.C, U.S., Ch. Summary Ta, pp. 1319-1331. https://doi.org/10.17226/10490Karahoca, A., Karahoca, D., Kara, A., sep 2009. Diagnosis of diabetes by using adaptive neuro fuzzy inference systems. In: 2009 Fifth International Conference on Soft Computing, Computing with Words and Perceptions in System Analysis, Decision and Control. Famagusta, pp. 1-4. https://doi.org/10.1109/ICSCCW.2009.5379497Kim, S., 2007. Burden of hospitalizations primarily due to uncontrolled diabetes. Diabetes Care 30 (5), 1281-1282. http://care.diabetesjournals.org/content/30/5/1281 , https://doi.org/10.2337/dc06-2070Kovatchev, B., Raimondo, D., Breton, M., Patek, S., Cobelli, C., jan 2008. In Silico Testing and in Vivo Experiments with Closed-Loop Control of Blood Glucose in Diabetes. IFAC Proceedings Volumes 41 (2), 4234-4239. https://doi.org/10.3182/20080706-5-KR-1001.00712Kovatchev, B. P., Breton, M., Dalla Man, C., Cobelli, C., 2009. In silico preclinical trials: A proof of concept in closed-loop control of type 1 diabetes. Journal of Diabetes Science and Technology 3 (1), 44-55. https://doi.org/10.1177/193229680900300106Kropff, J., et al., December 2015. 2 month evening and night closed-loop glucose control in patients with type 1 diabetes under free-living conditions: a randomised crossover trial. The Lancet Diabetes & Endocrinology 3 (2), 939-947. https://doi.org/10.1016/S2213-8587(15)00335-6Kux, L., 2012. Guidance for Industry and Food and Drug Administration Staff; The Content of Investigational Device Exemption and Premarket Approval Applications for Artificial Pancreas Device Systems; Availability. Federal Register 77 (226), 1-63.Lekkas, S., Mikhailov, L., 2010. Evolving fuzzy medical diagnosis of Pima Indians diabetes and of dermatological diseases. Artificial Intelligence in Medicine 50 (2), 117-126. https://doi.org/10.1016/j.artmed.2010.05.007Leon, B. S., Alanis, A. Y., Sanchez, E. N., Ornelas-Tellez, F., Ruiz-Velazquez, E., 2013. Neural inverse optimal control applied to type 1 diabetes mellitus patients. Analog Integrated Circuits and Signal Processing 76 (3), 343-352. https://doi.org/10.1007/s10470-013-0109-8Li, W., Todorov, E., Liu, D., 2011. Inverse optimality design for biological movement systems. In: IFAC Proceedings Volumes (IFAC-PapersOnline). Vol. 44. Elsevier, Milano, pp. 9662-9667. https://doi.org/10.3182/20110828-6-IT-1002.00877Nath, A., Dey, R., Balas, V. E., 2018. Closed Loop Blood Glucose Regulation of Type 1 Diabetic Patient Using Takagi-Sugeno Fuzzy Logic Control. In: Advances in Intelligent Systems and Computing. Springer, Cham, Switzerland, pp. 286-296. https://doi.org/10.1007/978-3-319-62524-9_23Ornelas, F., Sanchez, E. N., Loukianov, A. G., 2011. Discrete-time nonlinear systems inverse optimal control: A control Lyapunov function approach. In: Proceedings of the IEEE International Conference on Control Applications. IEEE, Denver, pp. 1431-1436. https://doi.org/10.1109/CCA.2011.6044461Ornelas-Tellez, F., Sanchez, E. N., Loukianov, A. G., Navarro-Lopez, E. M., 2011. Speed-gradient inverse optimal control for discrete-time nonlinear systems. In: Proceedings of the IEEE Conference on Decision and Control. IEEE, Orlando, pp. 290-295. https://doi.org/10.1109/CDC.2011.6160374Pesl, P., Herrero, P., Reddy, M., Xenou, M., Oliver, N., Johnston, D., Toumazou, C., Georgiou, P., Jan 2016. An advanced bolus calculator for type 1 diabetes: System architecture and usability results. IEEE Journal of Biomedical and Health Informatics 20 (1), 11-17. https://doi.org/10.1109/JBHI.2015.2464088Rios, Y. Y., Garcia-Rodriguez, J., Sanchez, E. N., Alanis, A. Y., Ruiz-Velazquez, E., 2018a. Rapid Prototyping of Neuro-Fuzzy Inverse Optimal Control as Applied to T1DM Patients. In: 2018 IEEE Latin American Conference on Computational Intelligence (LA-CCI). IEEE, Guadalajara, pp. 1-5. https://doi.org/10.1109/LA-CCI.2018.8625241Rios, Y. Y., García-Rodríguez, J. A., Sanchez, E. N., Alanis, A. Y., Ruiz-Velázquez, E., Durán, C., 2018b. Treatment for T1DM patients using neuro-fuzzy inverse optimal control algorithm: a rapid prototyping implementation. In: Revista Colombiana de Tecnologías de Avanzada. Colombia, pp. 26-33.Rios, Y. Y., García-Rodríguez, J. A., Sánchez, O. D., Sanchez, E. N., Alanis, A. Y., Ruiz-Velázquez, E., Arana-Daniel, N., 2018c. Inverse Optimal Control Using A Neural Multi-Step Predictor for T1DM Treatment. In: Proceedings of the International Joint Conference on Neural Networks. Rio de Janeiro, pp. 1-8. https://doi.org/10.1109/IJCNN.2018.8489197Rovithakis, G. A., Christodoulou, M. A., 2000. Adaptive Control with Recurrent High-order Neural Networks : Theory and Industrial Applications. Springer London, London, U.K. https://doi.org/10.1007/978-1-4471-0785-9Sanchez, E. N., Ornelas-Tellez, F., 2013. Discrete-time inverse optimal control for nonlinear systems, taylor & f Edition. CRC Press, Boca Raton, Florida, U.S. https://doi.org/10.1201/b14779Takagi, T., Sugeno, M., 1985. Fuzzy Identification of Systems and Its Applications to Modeling and Control. IEEE Transactions on Systems, Man and Cybernetics SMC-15 (1), 116 - 132. https://doi.org/10.1109/TSMC.1985.6313399Thabit, H., Hovorka, R., Sep. 2016. Coming of age: the artificial pancreas for type 1 diabetes. Diabetologia 59 (9), 1795-1805. https://doi.org/10.1007/s00125-016-4022-4Trevitt, S., Simpson, S., Wood, A., 2016. Artificial Pancreas Device Systems for the Closed-Loop Control of Type 1 Diabetes. Journal of Diabetes Science and Technology 10 (3), 714-723. https://doi.org/10.1177/1932296815617968Turksoy, K., Samadi, S., Feng, J., Littlejohn, E., Quinn, L., Cinar, A., Jan 2016. Meal detection in patients with type 1 diabetes: A new module for the multivariable adaptive artificial pancreas control system. IEEE Journal of Biomedical and Health Informatics 20 (1), 47-54. https://doi.org/10.1109/JBHI.2015.2446413van Bon, A. C., Luijf, Y. M., Koebrugge, R., Koops, R., Hoekstra, J. B. L., DeVries, J. H., 2014. Feasibility of a Portable Bihormonal Closed-Loop System to Control Glucose Excursions at Home Under Free-Living Conditions for 48 Hours. Diabetes Technology & Therapeutics 16 (3), 131-136, pMID: 24224750. https://doi.org/10.1089/dia.2013.0166Yeh, H., et al., 2012. Comparative effectiveness and safety of methods of insulin delivery and glucose monitoring for diabetes mellitus: A systematic review and meta-analysis. Annals of Internal Medicine 157 (5), 336-347. https://doi.org/10.7326/0003-4819-157-5-201209040-0050
    corecore