55 research outputs found

    Genomic and biological characterization of chiltepin yellow mosaic virus, a new tymovirus infecting Capsicum annuum var. aviculare in Mexico.

    Get PDF
    The characterization of viruses infecting wild plants is a key step towards understanding the ecology of plant viruses. In this work, the complete genomic nucleotide sequence of a new tymovirus species infecting chiltepin, the wild ancestor of Capsicum annuum pepper crops, in Mexico was determined, and its host range has been explored. The genome of 6,517 nucleotides has the three open reading frames described for tymoviruses, putatively encoding an RNA-dependent RNA polymerase, a movement protein and a coat protein. The 5′ and 3′ untranslated regions have structures with typical signatures of the tymoviruses. Phylogenetic analyses revealed that this new virus is closely related to the other tymoviruses isolated from solanaceous plants. Its host range is mainly limited to solanaceous species, which notably include cultivated Capsicum species. In the latter, infection resulted in a severe reduction of growth, indicating the potential of this virus to be a significant crop pathogen. The name of chiltepin yellow mosaic virus (ChiYMV) is proposed for this new tymovirus

    Physical activity and risk of Metabolic Syndrome in an urban Mexican cohort

    Get PDF
    Abstract Background In the Mexican population metabolic syndrome (MS) is highly prevalent. It is well documented that regular physical activity (PA) prevents coronary diseases, type 2 diabetes and MS. Most studies of PA have focused on moderate-vigorous leisure-time activity, because it involves higher energy expenditures, increase physical fitness, and decrease the risk of MS. However, for most people it is difficult to get a significant amount of PA from only moderately-vigorous leisure activity, so workplace activity may be an option for working populations, because, although may not be as vigorous in terms of cardio-respiratory efforts, it comprises a considerable proportion of the total daily activity with important energy expenditure. Since studies have also documented that different types and intensity of daily PA, including low-intensity, seem to confer important health benefits such as prevent MS, we sought to assess the impact of different amounts of leisure-time and workplace activities, including low-intensity level on MS prevention, in a sample of urban Mexican adults. Methods The study population consisted of 5118 employees and their relatives, aged 20 to 70 years, who were enrolled in the baseline evaluation of a cohort study. MS was assessed according to the criteria of the National Cholesterol Education Program, ATP III and physical activity with a validated self-administered questionnaire. Associations between physical activity and MS risk were assessed with multivariate logistic regression models. Results The prevalence of the components of MS in the study population were: high glucose levels 14.2%, high triglycerides 40.9%, high blood pressure 20.4%, greater than healthful waist circumference 43.2% and low-high density lipoprotein 76.9%. The prevalence of MS was 24.4%; 25.3% in men and 21.8% in women. MS risk was reduced among men (OR 0.72; 95%CI 0.57–0.95) and women (OR 0.78; 95%CI 0.64–0.94) who reported an amount of ≥30 minutes/day of leisure-time activity, and among women who reported an amount of ≥3 hours/day of workplace activity (OR 0.75; 95%CI 0.59–0.96). Conclusion Our results indicate that both leisure-time and workplace activity at different intensity levels, including low-intensity significantly reduce the risk of MS. This finding highlights the need for more recommendations regarding the specific amount and intensity of leisure-time and workplace activity needed to prevent MS

    The expansion field: The value of H_0

    Full text link
    Any calibration of the present value of the Hubble constant requires recession velocities and distances of galaxies. While the conversion of observed velocities into true recession velocities has only a small effect on the result, the derivation of unbiased distances which rest on a solid zero point and cover a useful range of about 4-30 Mpc is crucial. A list of 279 such galaxy distances within v<2000 km/s is given which are derived from the tip of the red-giant branch (TRGB), from Cepheids, and from supernovae of type Ia (SNe Ia). Their random errors are not more than 0.15 mag as shown by intercomparison. They trace a linear expansion field within narrow margins from v=250 to at least 2000 km/s. Additional 62 distant SNe Ia confirm the linearity to at least 20,000 km/s. The dispersion about the Hubble line is dominated by random peculiar velocities, amounting locally to <100 km/s but increasing outwards. Due to the linearity of the expansion field the Hubble constant H_0 can be found at any distance >4.5 Mpc. RR Lyr star-calibrated TRGB distances of 78 galaxies above this limit give H_0=63.0+/-1.6 at an effective distance of 6 Mpc. They compensate the effect of peculiar motions by their large number. Support for this result comes from 28 independently calibrated Cepheids that give H_0=63.4+/-1.7 at 15 Mpc. This agrees also with the large-scale value of H_0=61.2+/-0.5 from the distant, Cepheid-calibrated SNe Ia. A mean value of H_0=62.3+/-1.3 is adopted. Because the value depends on two independent zero points of the distance scale its systematic error is estimated to be 6%. Typical errors of H_0 come from the use of a universal, yet unjustified P-L relation of Cepheids, the neglect of selection bias in magnitude-limited samples, or they are inherent to the adopted models.Comment: 44 pages, 4 figures, 6 tables, accepted for publication in the Astronony and Astrophysics Review 15

    Black hole spin: theory and observation

    Full text link
    In the standard paradigm, astrophysical black holes can be described solely by their mass and angular momentum - commonly referred to as `spin' - resulting from the process of their birth and subsequent growth via accretion. Whilst the mass has a standard Newtonian interpretation, the spin does not, with the effect of non-zero spin leaving an indelible imprint on the space-time closest to the black hole. As a consequence of relativistic frame-dragging, particle orbits are affected both in terms of stability and precession, which impacts on the emission characteristics of accreting black holes both stellar mass in black hole binaries (BHBs) and supermassive in active galactic nuclei (AGN). Over the last 30 years, techniques have been developed that take into account these changes to estimate the spin which can then be used to understand the birth and growth of black holes and potentially the powering of powerful jets. In this chapter we provide a broad overview of both the theoretical effects of spin, the means by which it can be estimated and the results of ongoing campaigns.Comment: 55 pages, 5 figures. Published in: "Astrophysics of Black Holes - From fundamental aspects to latest developments", Ed. Cosimo Bambi, Springer: Astrophysics and Space Science Library. Additional corrections mad

    Volviéndonos mejores: necesidad de acción inmediata ante el reto de la obesidad. Una postura de profesionales de la salud.

    Get PDF
    La creciente epidemia de obesidad ha sido uno de los retos más importantes de salud pública en México durante los últimos años. Con apoyo de la Federación Mundial de Obesidad, en 2021 formamos un grupo de profesionales para identificar y resumir las acciones prioritarias en las que puede enfocarse nuestro país para hacer frente a esta epidemia. Al proceso de desarrollo y discusión de este grupo se sumaron más de 1 000 profesionales de la salud para retomar recomendaciones de documentos y guías de alto nivel previamente publicados. En conmemoración del Día Mundial de la Obesidad, en este 2022 se presenta esta postura como insumo para el desarrollo de acciones en el ámbito profesional y de los diferentes sectores, en la que se incluyen 10 recomendaciones de acción, desde la perspectiva poblacional hasta la atención individualizada, y se enfatiza en la importancia de la participación social, de las intervenciones integrales con visión centrada en la persona y de la sostenibilidad planetaria, además de mejorar la educación y las campañas de difusión, propiciar un ambiente promotor de entornos activos y blindar de conflictos de interés los esfuerzos de prevención y control. La postura hace un llamado para abordar la obesidad de manera seria, con base en la evidencia científica, oportuna e integral, con enfoque de curso de vida, de forma ética y sensible, y sin perpetuar las barreras del estigma de peso en la sociedad

    Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network

    Get PDF
    Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between data and simulation

    Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network

    Get PDF
    Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on experimental data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between experimental data and simulation

    Searching for solar KDAR with DUNE

    Get PDF
    corecore