279 research outputs found

    New groups of planetary nebulae with peculiar dust chemistry towards the Galactic bulge

    Full text link
    We investigate Galactic bulge planetary nebulae without emission-line central stars for which peculiar infrared spectra have been obtained with the Spitzer Space Telescope, including the simultaneous signs of oxygen and carbon based dust. Three separate sub-groups can be defined characterized by the different chemical composition of the dust and the presence of crystalline and amorphous silicates. We find that the classification based on the dust properties is reflected in the more general properties of these planetary nebulae. However, some observed properties are difficult to relate to the common view of planetary nebulae. In particular, it is challenging to interpret the peculiar gas chemical composition of many analyzed objects in the standard picture of the evolution of planetary nebulae progenitors. We confirm that the dual-dust chemistry phenomenon is not limited to planetary nebulae with emission-line central stars.Comment: 17 pages, 13 figure

    The impact of the COVID-19 lockdown on depression sufferers: a qualitative study from the province of Zaragoza, Spain

    Get PDF
    Background and purpose: The impact of COVID-19 and its control measures have exacerbated existing mental health conditions. Although the deleterious effects of mental health problems are well known, fewer studies have examined the links between the Social Determinants of Health (SDHs) and depression. This study provides insights into the relationship between SDHs and depression during the first strict lockdown in Spain, which lasted for a period of 7 weeks. Methods: Fifty-two structured interviews were conducted with people diagnosed with depression during June 2020 in the province of Zaragoza (Spain). Interviews were conducted by telephone due to lockdown constraints. Inductive thematic content analysis was used to explore, develop, and define emergent categories of analysis, which were mapped against the SDH framework. Results: Listening to people’s experiences of living with depression during lockdown provided insights into their concerns and coping strategies, which are greatly influenced by the conditions in which they live, their job and their age. Examples of these factors include access to and quality of physical spaces, including housing conditions and public spaces for socialising, social support, adverse working conditions which include caring responsibilities, and access to digital technologies and healthcare services. Conclusion: SDHs have played a fundamental role in shaping people’s health and well-being during the COVID-19 pandemic, and this study has shown that they have a considerable effect on depression outcomes. Governments should consider implementing social welfare programs to tackle both psychosocial problems and material need during crisis situations

    Discovery of X-ray polarization angle rotation in the jet from blazar Mrk 421

    Get PDF
    Full list of the authors: Di Gesu, Laura; Marshall, Herman L.; Ehlert, Steven R.; Kim, Dawoon E.; Donnarumma, Immacolata; Tavecchio, Fabrizio; Liodakis, Ioannis; Kiehlmann, Sebastian; Agudo, Iván; Jorstad, Svetlana G.; Muleri, Fabio; Marscher, Alan P.; Puccetti, Simonetta; Middei, Riccardo; Perri, Matteo; Pacciani, Luigi; Negro, Michela; Romani, Roger W.; Di Marco, Alessandro; Blinov, Dmitry; Bourbah, Ioakeim G.; Kontopodis, Evangelos; Mandarakas, Nikos; Romanopoulos, Stylianos; Skalidis, Raphael; Vervelaki, Anna; Casadio, Carolina; Escudero, Juan; Myserlis, Ioannis; Gurwell, Mark A.; Rao, Ramprasad; Keating, Garrett K.; Kouch, Pouya M.; Lindfors, Elina; Aceituno, Francisco José; Bernardos, Maria I.; Bonnoli, Giacomo; Casanova, Víctor; García-Comas, Maya; Agís-González, Beatriz; Husillos, César; Marchini, Alessandro; Sota, Alfredo; Imazawa, Ryo; Sasada, Mahito; Fukazawa, Yasushi; Kawabata, Koji S.; Uemura, Makoto; Mizuno, Tsunefumi; Nakaoka, Tatsuya; Akitaya, Hiroshi; Savchenko, Sergey S.; Vasilyev, Andrey A.; Gómez, José L.; Antonelli, Lucio A.; Barnouin, Thibault; Bonino, Raffaella; Cavazzuti, Elisabetta; Costamante, Luigi; Chen, Chien-Ting; Cibrario, Nicolò; De Rosa, Alessandra; Di Pierro, Federico; Errando, Manel; Kaaret, Philip; Karas, Vladimir; Krawczynski, Henric; Lisalda, Lindsey; Madejski, Grzegorz; Malacaria, Christian; Marin, Frédéric; Marinucci, Andrea; Massaro, Francesco; Matt, Giorgio; Mitsuishi, Ikuyuki; O'Dell, Stephen L.; Paggi, Alessandro; Peirson, Abel L.; Petrucci, Pierre-Olivier; Ramsey, Brian D.; Tennant, Allyn F.; Wu, Kinwah; Bachetti, Matteo; Baldini, Luca; Baumgartner, Wayne H.; Bellazzini, Ronaldo; Bianchi, Stefano; Bongiorno, Stephen D.; Brez, Alessandro; Bucciantini, Niccolò; Capitanio, Fiamma; Castellano, Simone; Ciprini, Stefano; Costa, Enrico; Del Monte, Ettore; Di Lalla, Niccolò; Doroshenko, Victor; Dovčiak, Michal; Enoto, Teruaki; Evangelista, Yuri; Fabiani, Sergio; Ferrazzoli, Riccardo; Garcia, Javier A.; Gunji, Shuichi; Hayashida, Kiyoshi; Heyl, Jeremy; Iwakiri, Wataru; Kislat, Fabian; Kitaguchi, Takao; Kolodziejczak, Jeffery J.; La Monaca, Fabio; Latronico, Luca; Maldera, Simone; Manfreda, Alberto; Ng, C. -Y.; Omodei, Nicola; Oppedisano, Chiara; Papitto, Alessandro; Pavlov, George G.; Pesce-Rollins, Melissa; Pilia, Maura; Possenti, Andrea; Poutanen, Juri; Rankin, John; Ratheesh, Ajay; Roberts, Oliver J.; Sgrò, Carmelo; Slane, Patrick; Soffitta, Paolo; Spandre, Gloria; Swartz, Douglas A.; Tamagawa, Toru; Taverna, Roberto; Tawara, Yuzuru; Thomas, Nicholas E.; Tombesi, Francesco; Trois, Alessio; Tsygankov, Sergey S.; Turolla, Roberto; Vink, Jacco; Weisskopf, Martin C.; Xie, Fei; Zane, SilviaThe magnetic-field conditions in astrophysical relativistic jets can be probed by multiwavelength polarimetry, which has been recently extended to X-rays. For example, one can track how the magnetic field changes in the flow of the radiating particles by observing rotations of the electric vector position angle ¿. Here we report the discovery of a ¿X rotation in the X-ray band in the blazar Markarian¿421 at an average flux state. Across the 5¿days of Imaging X-ray Polarimetry Explorer observations on 4¿6 and 7¿9 June 2022, ¿X rotated in total by ¿360°. Over the two respective date ranges, we find constant, within uncertainties, rotation rates (80¿±¿9° per day and 91¿±¿8° per day) and polarization degrees (¿X¿=¿10%¿±¿1%). Simulations of a random walk of the polarization vector indicate that it is unlikely that such rotation(s) are produced by a stochastic process. The X-ray-emitting site does not completely overlap the radio, infrared and optical emission sites, as no similar rotation of ¿ was observed in quasi-simultaneous data at longer wavelengths. We propose that the observed rotation was caused by a helical magnetic structure in the jet, illuminated in the X-rays by a localized shock propagating along this helix. The optically emitting region probably lies in a sheath surrounding an inner spine where the X-ray radiation is released. © 2023, The Author(s), under exclusive licence to Springer Nature Limited.The Imaging X-ray Polarimetry Explorer (IXPE) is a joint US and Italian mission. The US contribution is supported by the National Aeronautics and Space Administration (NASA) and led and managed by its Marshall Space Flight Center (MSFC), with industry partner Ball Aerospace (contract NNM15AA18C). The Italian contribution is supported by the Italian Space Agency (Agenzia Spaziale Italiana, ASI) through contract ASI-OHBI-2017-12-I.0, agreements ASI-INAF-2017-12-H0 and ASI-INFN-2017.13-H0, and its Space Science Data Center (SSDC), and by the Istituto Nazionale di Astrofisica (INAF) and the Istituto Nazionale di Fisica Nucleare (INFN) in Italy. This research used data products provided by the IXPE Team (MSFC, SSDC, INAF and INFN) and distributed with additional software tools by the High-Energy Astrophysics Science Archive Research Center (HEASARC), at NASA Goddard Space Flight Center (GSFC). The IAA-CSIC group acknowledges financial support from the grant CEX2021-001131-S funded by MCIN/AEI/10.13039/501100011033 to the Instituto de Astrofisica de Andalucia-CSIC and through grant PID2019-107847RB-C44. The POLAMI observations were carried out at the IRAM 30?m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain). The Submillimetre Array is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics and is funded by the Smithsonian Institution and the Academia Sinica. Mauna Kea, the location of the SMA, is a culturally important site for the indigenous Hawaiian people; we are privileged to study the cosmos from its summit. Some of the data reported here are based on observations made with the Nordic Optical Telescope, owned in collaboration with the University of Turku and Aarhus University, and operated jointly by Aarhus University, the University of Turku and the University of Oslo, representing Denmark, Finland and Norway, the University of Iceland and Stockholm University at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias. E.L. was supported by Academy of Finland projects 317636 and 320045. The data presented here were obtained (in part) with ALFOSC, which is provided by the Instituto de Astrofisica de Andalucia (IAA) under a joint agreement with the University of Copenhagen and NOT. We are grateful to V. Braga, M. Monelli and M. Saenchez Benavente for performing the observations at the Nordic Optical Telescope. Part of the French contributions is supported by the Scientific Research National Center (CNRS) and the French spatial agency (CNES). The research at Boston University was supported in part by National Science Foundation grant AST-2108622, NASA Fermi Guest Investigator grants 80NSSC21K1917 and 80NSSC22K1571, and NASA Swift Guest Investigator grant 80NSSC22K0537. This research was conducted in part using the Mimir instrument, jointly developed at Boston University and Lowell Observatory and supported by NASA, NSF and the W.M. Keck Foundation. We thank D. Clemens for guidance in the analysis of the Mimir data. This work was supported by JST, the establishment of university fellowships towards the creation of science and technology innovation, grant number JPMJFS2129. This work was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI grant number JP21H01137. This work was also partially supported by the Optical and Near-Infrared Astronomy Inter-University Cooperation Program from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. We are grateful to the observation and operating members of the Kanata Telescope. Some of the data are based on observations collected at the Observatorio de Sierra Nevada, owned and operated by the Instituto de Astrofisica de Andalucia (IAA-CSIC). Further data are based on observations collected at the Centro Astronomico Hispano en Andalucia (CAHA), operated jointly by Junta de Andalucia and Consejo Superior de Investigaciones Cientificas (IAA-CSIC). This research has made use of data from the RoboPol programme, a collaboration between Caltech, the University of Crete, IA-FORTH, IUCAA, the MPIfR and the Nicolaus Copernicus University, which was conducted at Skinakas Observatory in Crete, Greece. D.B., S.K., R.S. and N.M., acknowledge support from the European Research Council (ERC) under the European Unions Horizon 2020 Research and Innovation programme under grant agreement no. 771282. C.C. acknowledges support from the European Research Council (ERC) under the HORIZON ERC Grants 2021 programme under grant agreement no. 101040021. The research at Boston University was supported in part by National Science Foundation grant AST-2108622, NASA Fermi Guest Investigator grant 80NSSC21K1917 and 80NSSC22K1571, and NASA Swift Guest Investigator grant 80NSSC22K0537. This work was supported by NSF grant AST-2109127. We acknowledge the use of public data from the Swift data archive. Data from the Steward Observatory spectropolarimetric monitoring project were used. This programme is supported by Fermi Guest Investigator grants NNX08AW56G, NNX09AU10G, NNX12AO93G and NNX15AU81G. We acknowledge funding to support our NOT observations from the Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Finland (Academy of Finland grant no 306531). This work has made use of data from the Asteroid Terrestrial-impact Last Alert System (ATLAS) project. The Asteroid Terrestrial-impact Last Alert System (ATLAS) project is primarily funded to search for near-Earth asteroids through NASA grants NN12AR55G, 80NSSC18K0284 and 80NSSC18K1575; by-products of the NEO search include images and catalogues from the survey area. This work was partially funded by Kepler/K2 grant J1944/80NSSC19K0112 and HST GO-15889, and STFC grants ST/T000198/1 and ST/S006109/1. The ATLAS science products have been made possible through the contributions of the University of Hawaii Institute for Astronomy, the Queen's University Belfast, the Space Telescope Science Institute, the South African Astronomical Observatory and The Millennium Institute of Astrophysics (MAS), Chile. The Very Long Baseline Array is an instrument of the National Radio Astronomy Observatory. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under a cooperative agreement by Associated Universities, Inc

    Prevalence of vertebral fractures and their prognostic significance in the survival in patients with chronic kidney disease stages 3-5 not on dialysis

    Get PDF
    The prevalence of vertebral fractures (VF) and their association with clinical risk factors and outcomes are poorly documented in chronic kidney disease (CKD) cohorts. The aim of the study was to evaluate the prevalence of VF in patients with non-dialysis dependent CKD (NDD-CKD), their value in predicting mortality and its correlation with parameters of bone mineral metabolism and vascular calcification. 612 NDD 3-5 stage CKD patients participating in the OSERCE-2 study, a prospective, multicenter, cohort study, were prospectively evaluated and categorized into two groups according to presence or absence of VF at enrollment. VF were assessed with lateral radiographs and Genant semi-quantitative method was applied. Three radiologists specialized in musculoskeletal radiology performed consensual reading of individual images obtained using a Raim DICOM Viewer and a Canon EOS 350 camera to measure with Java Image software in those who had traditional acetate X-ray. Factors related to VF were assessed by logistic regression analysis. Association between VF and death over a 3-year follow-up was assessed by Kaplan-Meier survival curves and Cox-proportional hazard models. VF were detected in 110patients(18%). Serumphosphatelevels(OR0.719,95%CI0.532to0.972,p = 0.032),ankle-brachial index 3 and serum phosphate, the presence of VF (HR 1.983, 95% CI 1.009-3.898, p = 0.047) were an independent predictor of all-cause mortality. In our study 18% of patients with NDD-CKD have VF. Factors associated with VF were age, low serum phosphate levels and peripheral vascular disease. The presence of VF was an independent risk factor for mortality in stages 3-5 NDD-CKD patients. Clinical trials are needed to confirm whether this relationship is causal and reversible with treatment for osteoporosis

    Patients receiving a high burden of antibiotics in the community in Spain: a cross-sectional study

    Get PDF
    Some patients in the community receive a high burden of antibiotics. We aimed at describing the characteristics of these patients, antibiotics used, and conditions for which they received antibiotics. We carried out a cross-sectional study. Setting: Thirty Health Primary Care Areas from 12 regions in Spain, covering 5, 960, 191 inhabitants. Patients having at least 30 packages of antibacterials for systemic use dispensed in 2017 were considered. Main outcome measures: Prevalence of antibiotic use, conditions for which antibiotics were prescribed, clinical characteristics of patients, comorbidities, concomitant treatments, and microbiological isolates. Patient''s average age was 70 years; 52% were men; 60% smokers/ex-smokers; 54% obese. Overall, 93% of patients had, at least, one chronic condition, and four comorbidities on average. Most common comorbidities were cardiovascular and/or hypertension (67%), respiratory diseases (62%), neurological/mental conditions (32%), diabetes (23%), and urological diseases (21%); 29% were immunosuppressed, 10% were dead at the time of data collection. Patients received three antibiotic treatments per year, mainly fluoroquinolones (28%), macrolides (21%), penicillins (19%), or cephalosporins (12%). Most frequently treated conditions were lower respiratory tract (infections or prophylaxis) (48%), urinary (27%), and skin/soft tissue infections (11%). Thirty-five percent have been guided by a microbiological diagnosis, being Pseudomonas aeruginosa (30%) and Escherichia coli (16%) the most frequent isolates. In conclusion, high antibiotic consumers in the community were basically elder, with multimorbidity and polymedication. They frequently received broad-spectrum antibiotics for long periods of time. The approach to infections in high consumers should be differentiated from healthy patients receiving antibiotics occasionally

    The syndrome of central hypothyroidism and macroorchidism: IGSF1 controls TRHR and FSHB expression by differential modulation of pituitary TGFβ and Activin pathways

    Get PDF
    IGSF1 (Immunoglobulin Superfamily 1) gene defects cause central hypothyroidism and macroorchidism. However, the pathogenic mechanisms of the disease remain unclear. Based on a patient with a full deletion of IGSF1 clinically followed from neonate to adulthood, we investigated a common pituitary origin for hypothyroidism and macroorchidism, and the role of IGSF1 as regulator of pituitary hormone secretion. The patient showed congenital central hypothyroidism with reduced TSH biopotency, over-secretion of FSH at neonatal minipuberty and macroorchidism from 3 years of age. His markedly elevated inhibin B was unable to inhibit FSH secretion, indicating a status of pituitary inhibin B resistance. We show here that IGSF1 is expressed both in thyrotropes and gonadotropes of the pituitary and in Leydig and germ cells in the testes, but at very low levels in Sertoli cells. Furthermore, IGSF1 stimulates transcription of the thyrotropin-releasing hormone receptor (TRHR) by negative modulation of the TGFβ1-Smad signaling pathway, and enhances the synthesis and biopotency of TSH, the hormone secreted by thyrotropes. By contrast, IGSF1 strongly down-regulates the activin-Smad pathway, leading to reduced expression of FSHB, the hormone secreted by gonadotropes. In conclusion, two relevant molecular mechanisms linked to central hypothyroidism and macroorchidism in IGSF1 deficiency are identified, revealing IGSF1 as an important regulator of TGFβ/Activin pathways in the pituitary

    X-Ray Polarization Observations of BL Lacertae

    Get PDF
    Full list of authors: Middei, Riccardo; Liodakis, Ioannis; Perri, Matteo; Puccetti, Simonetta; Cavazzuti, Elisabetta; Di Gesu, Laura; Ehlert, Steven R.; Madejski, Grzegorz; Marscher, Alan P.; Marshall, Herman L.; Muleri, Fabio; Negro, Michela; Jorstad, Svetlana G.; Agis-Gonzalez, Beatriz; Agudo, Ivan; Bonnoli, Giacomo; Bernardos, Maria, I; Casanova, Victor; Garcia-Comas, Maya; Husillos, Cesar; Marchini, Alessandro; Sota, Alfredo; Kouch, Pouya M.; Lindfors, Elina; Borman, George A.; Kopatskaya, Evgenia N.; Larionova, Elena G.; Morozova, Daria A.; Savchenko, Sergey S.; Vasilyev, Andrey A.; Zhovtan, Alexey, V; Casadio, Carolina; Escudero, Juan; Myserlis, Ioannis; Hales, Antonio; Kameno, Seiji; Kneissl, Ruediger; Messias, Hugo; Nagai, Hiroshi; Blinov, Dmitry; Bourbah, Ioakeim G.; Kiehlmann, Sebastian; Kontopodis, Evangelos; Mandarakas, Nikos; Romanopoulos, Stylianos; Skalidis, Raphael; Vervelaki, Anna; Masiero, Joseph R.; Mawet, Dimitri; Millar-Blanchaer, Maxwell A.; Panopoulou, Georgia, V; Tinyanont, Samaporn; Berdyugin, Andrei, V; Kagitani, Masato; Kravtsov, Vadim; Sakanoi, Takeshi; Imazawa, Ryo; Sasada, Mahito; Fukazawa, Yasushi; Kawabata, Koji S.; Uemura, Makoto; Mizuno, Tsunefumi; Nakaoka, Tatsuya; Akitaya, Hiroshi; Gurwell, Mark; Rao, Ramprasad; Di Lalla, Niccolo; Cibrario, Nicolo; Donnarumma, Immacolata; Kim, Dawoon E.; Omodei, Nicola; Pacciani, Luigi; Poutanen, Juri; Tavecchio, Fabrizio; Antonelli, Lucio A.; Bachetti, Matteo; Baldini, Luca; Baumgartner, Wayne H.; Bellazzini, Ronaldo; Bianchi, Stefano; Bongiorno, Stephen D.; Bonino, Raffaella; Brez, Alessandro; Bucciantini, Niccolo; Capitanio, Fiamma; Castellano, Simone; Ciprini, Stefano; Costa, Enrico; De Rosa, Alessandra; Del Monte, Ettore; Di Marco, Alessandro; Doroshenko, Victor; Dovciak, Michal; Enoto, Teruaki; Evangelista, Yuri; Fabiani, Sergio; Ferrazzoli, Riccardo; Garcia, Javier A.; Gunji, Shuichi; Hayashida, Kiyoshi; Heyl, Jeremy; Iwakiri, Wataru; Karas, Vladimir; Kitaguchi, Takao; Kolodziejczak, Jeffery J.; Krawczynski, Henric; La Monaca, Fabio; Latronico, Luca; Maldera, Simone; Manfreda, Alberto; Marin, Frederic; Marinucci, Andrea; Massaro, Francesco; Matt, Giorgio; Mitsuishi, Ikuyuki; Ng, C-Y; O'Dell, Stephen L.; Oppedisano, Chiara; Papitto, Alessandro; Pavlov, George G.; Peirson, Abel L.; Pesce-Rollins, Melissa; Petrucci, Pierre-Olivier; Pilia, Maura; Possenti, Andrea; Ramsey, Brian D.; Rankin, John; Ratheesh, Ajay; Romani, Roger W.; Sgro, Carmelo; Slane, Patrick; Soffitta, Paolo; Spandre, Gloria; Tamagawa, Toru; Taverna, Roberto; Tawara, Yuzuru; Tennant, Allyn F.; Thomas, Nicholas E.; Tombesi, Francesco; Trois, Alessio; Tsygankov, Sergey; Turolla, Roberto; Vink, Jacco; Weisskopf, Martin C.; Wu, Kinwah; Xie, Fei; Zane, Silvia.--This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.Blazars are a class of jet-dominated active galactic nuclei with a typical double-humped spectral energy distribution. It is of common consensus that the synchrotron emission is responsible for the low frequency peak, while the origin of the high frequency hump is still debated. The analysis of X-rays and their polarization can provide a valuable tool to understand the physical mechanisms responsible for the origin of high-energy emission of blazars. We report the first observations of BL Lacertae (BL Lac) performed with the Imaging X-ray Polarimetry Explorer, from which an upper limit to the polarization degree ΠX < 12.6% was found in the 2–8 keV band. We contemporaneously measured the polarization in radio, infrared, and optical wavelengths. Our multiwavelength polarization analysis disfavors a significant contribution of proton-synchrotron radiation to the X-ray emission at these epochs. Instead, it supports a leptonic origin for the X-ray emission in BL Lac. © 2022. The Author(s). Published by the American Astronomical Society.The Imaging X-ray Polarimetry Explorer (IXPE) is a joint US and Italian mission. The US contribution is supported by the National Aeronautics and Space Administration (NASA) and led and managed by its Marshall Space Flight Center (MSFC), with industry partner Ball Aerospace (contract NNM15AA18C). The Italian contribution is supported by the Italian Space Agency (Agenzia Spaziale Italiana, ASI) through contract ASI-OHBI-2017-12-I.0, agreements ASI-INAF-2017-12-H0 and ASI-INFN-2017.13-H0, and its Space Science Data Center (SSDC), and by the Istituto Nazionale di Astrofisica (INAF) and the Istituto Nazionale di Fisica Nucleare (INFN) in Italy. This research used data products provided by the IXPE Team (MSFC, SSDC, INAF, and INFN) and distributed with additional software tools by the High-Energy Astrophysics Science Archive Research Center (HEASARC), at NASA Goddard Space Flight Center (GSFC). We acknowledge financial support from ASI-INAF agreement n. 2022-14-HH.0. The research at Boston University was supported in part by National Science Foundation grant AST-2108622 and NASA Swift Guest Investigator grant 80NSSC22K0537. This research has made use of data from the RoboPol program, a collaboration between Caltech, the University of Crete, IA-FORTH, IUCAA, the MPIfR, and the Nicolaus Copernicus University, which was conducted at Skinakas Observatory in Crete, Greece. The IAA-CSIC coauthors acknowledge financial support from the Spanish "Ministerio de Ciencia e Innovacion" (MCINN) through the "Center of Excellence Severo Ochoa" award for the Instituto de Astrofísica de Andalucía-CSIC (SEV-2017-0709). Acquisition and reduction of the POLAMI, TOP-MAPCAR, and OSN data was supported in part by MICINN through grants AYA2016-80889-P and PID2019-107847RB-C44. The POLAMI observations were carried out at the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). This Letter makes use of the following ALMA director's discretionary time data under proposal ESO#2021.A.00016.T. ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan), together with NRC (Canada), MOST, and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ. Some of the data reported here are based on observations obtained at the Hale Telescope, Palomar Observatory as part of a continuing collaboration between the California Institute of Technology, NASA/JPL, Yale University, and the National Astronomical Observatories of China. This research made use of Photutils, an Astropy package for detection and photometry of astronomical sources (Bradley et al. 2019). G.V.P. acknowledges support by NASA through the NASA Hubble Fellowship grant #HST-HF2-51444.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. The data in this study include observations made with the Nordic Optical Telescope, owned in collaboration by the University of Turku and Aarhus University, and operated jointly by Aarhus University, the University of Turku, and the University of Oslo, representing Denmark, Finland, and Norway, the University of Iceland and Stockholm University at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias. The data presented here were obtained in part with ALFOSC, which is provided by the Instituto de Astrofísica de Andalucía (IAA) under a joint agreement with the University of Copenhagen and NOT. E.L. was supported by Academy of Finland projects 317636 and 320045. Part of the French contribution is supported by the Scientific Research National Center (CNRS) and the French Spatial Agency (CNES). Some of the data are based on observations collected at the Observatorio de Sierra Nevada, owned and operated by the Instituto de Astrofísica de Andalucía (IAA-CSIC). Further data are based on observations collected at the Centro Astronómico Hispano-Alemán (CAHA), operated jointly by Junta de Andalucía and Consejo Superior de Investigaciones Científicas (IAA-CSIC). D.B., S.K., R.S., and N. M. acknowledge support from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation program under grant agreement No. 771282. C.C. acknowledges support by the European Research Council (ERC) under the HORIZON ERC Grants 2021 program under grant agreement No. 101040021. The Dipol-2 polarimeter was built in cooperation by the University of Turku, Finland, and the Leibniz Institut für Sonnenphysik, Germany, with support from the Leibniz Association grant SAW-2011-KIS-7. We are grateful to the Institute for Astronomy, University of Hawaii, for the allocated observing time. A.H. acknowledges The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. This work was supported by JST, the establishment of university fellowships toward the creation of science technology innovation; grant No. JPMJFS2129. This work was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI grant Nos. JP21H01137. This work was also partially supported by Optical and Near-Infrared Astronomy Inter-University Cooperation Program from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.With funding from the Spanish government through the "Severo Ochoa Centre of Excellence" accreditation (CEX2021-001131-S).Peer reviewe

    Polarized blazar X-rays imply particle acceleration in shocks

    Get PDF
    Full list of authors: Liodakis, Ioannis; Marscher, Alan P.; Agudo, Ivan; Berdyugin, Andrei V.; Bernardos, Maria I.; Bonnoli, Giacomo; Borman, George A.; Casadio, Carolina; Casanova, Victor; Cavazzuti, Elisabetta; Cavero, Nicole Rodriguez; Di Gesu, Laura; Di Lalla, Niccolo; Donnarumma, Immacolata; Ehlert, Steven R.; Errando, Manel; Escudero, Juan; Garcia-Comas, Maya; Agis-Gonzalez, Beatriz; Husillos, Cesar; Jormanainen, Jenni; Jorstad, Svetlana G.; Kagitani, Masato; Kopatskaya, Evgenia N.; Kravtsov, Vadim; Krawczynski, Henric; Lindfors, Elina; Larionova, Elena G.; Madejski, Grzegorz M.; Marin, Frederic; Marchini, Alessandro; Marshall, Herman L.; Morozova, Daria A.; Massaro, Francesco; Masiero, Joseph R.; Mawet, Dimitri; Middei, Riccardo; Millar-Blanchaer, Maxwell A.; Myserlis, Ioannis; Negro, Michela; Nilsson, Kari; O'Dell, Stephen L.; Omodei, Nicola; Pacciani, Luigi; Paggi, Alessandro; Panopoulou, Georgia V.; Peirson, Abel L.; Perri, Matteo; Petrucci, Pierre-Olivier; Poutanen, Juri; Puccetti, Simonetta; Romani, Roger W.; Sakanoi, Takeshi; Savchenko, Sergey S.; Sota, Alfredo; Tavecchio, Fabrizio; Tinyanont, Samaporn; Vasilyev, Andrey A.; Weaver, Zachary R.; Zhovtan, Alexey V.; Antonelli, Lucio A.; Bachetti, Matteo; Baldini, Luca; Baumgartner, Wayne H.; Bellazzini, Ronaldo; Bianchi, Stefano; Bongiorno, Stephen D.; Bonino, Raffaella; Brez, Alessandro; Bucciantini, Niccolo; Capitanio, Fiamma; Castellano, Simone; Ciprini, Stefano; Costa, Enrico; De Rosa, Alessandra; Del Monte, Ettore; Di Marco, Alessandro; Doroshenko, Victor; Dovciak, Michal; Enoto, Teruaki; Evangelista, Yuri; Fabiani, Sergio; Ferrazzoli, Riccardo; Garcia, Javier A.; Gunji, Shuichi; Hayashida, Kiyoshi; Heyl, Jeremy; Iwakiri, Wataru; Karas, Vladimir; Kitaguchi, Takao; Kolodziejczak, Jeffery J.; La Monaca, Fabio; Latronico, Luca; Maldera, Simone; Manfreda, Alberto; Marinucci, Andrea; Matt, Giorgio; Mitsuishi, Ikuyuki; Mizuno, Tsunefumi; Muleri, Fabio; Ng, Stephen C. -Y.; Oppedisano, Chiara; Papitto, Alessandro; Pavlov, George G.; Pesce-Rollins, Melissa; Pilia, Maura; Possenti, Andrea; Ramsey, Brian D.; Rankin, John; Ratheesh, Ajay; Sgro, Carmelo; Slane, Patrick; Soffitta, Paolo; Spandre, Gloria; Tamagawa, Toru; Taverna, Roberto; Tawara, Yuzuru; Tennant, Allyn F.; Thomas, Nicolas E.; Tombesi, Francesco; Trois, Alessio; Tsygankov, Sergey; Turolla, Roberto; Vink, Jacco; Weisskopf, Martin C.; Wu, Kinwah; Xie, Fei; Zane, Silvia.--This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.Most of the light from blazars, active galactic nuclei with jets of magnetized plasma that point nearly along the line of sight, is produced by high-energy particles, up to around 1 TeV. Although the jets are known to be ultimately powered by a supermassive black hole, how the particles are accelerated to such high energies has been an unanswered question. The process must be related to the magnetic field, which can be probed by observations of the polarization of light from the jets. Measurements of the radio to optical polarization—the only range available until now—probe extended regions of the jet containing particles that left the acceleration site days to years earlier1,2,3, and hence do not directly explore the acceleration mechanism, as could X-ray measurements. Here we report the detection of X-ray polarization from the blazar Markarian 501 (Mrk 501). We measure an X-ray linear polarization degree ΠX of around 10%, which is a factor of around 2 higher than the value at optical wavelengths, with a polarization angle parallel to the radio jet. This points to a shock front as the source of particle acceleration and also implies that the plasma becomes increasingly turbulent with distance from the shock. © The Author(s) 2022.I.L. was supported by the JSPS postdoctoral short-term fellowship programme. The Imaging X-ray Polarimetry Explorer (IXPE) is a joint US and Italian mission. The US contribution is supported by the National Aeronautics and Space Administration (NASA) and led and managed by its Marshall Space Flight Center (MSFC), with industry partner Ball Aerospace (contract NNM15AA18C). The Italian contribution is supported by the Italian Space Agency (Agenzia Spaziale Italiana, ASI) through contract ASI-OHBI-2017-12-I.0, agreements ASI-INAF-2017-12-H0 and ASI-INFN-2017.13-H0, and its Space Science Data Center (SSDC) with agreements ASI-INAF-2022-14-HH.0 and ASI-INFN 2021-43-HH.0, and by the Istituto Nazionale di Astrofisica (INAF) and the Istituto Nazionale di Fisica Nucleare (INFN) in Italy. This research used data products provided by the IXPE Team (MSFC, SSDC, INAF and INFN) and distributed with additional software tools by the High-Energy Astrophysics Science Archive Research Center (HEASARC), at NASA Goddard Space Flight Center (GSFC). Data from the Steward Observatory spectropolarimetric monitoring project were used. This programme is supported by Fermi Guest Investigator grants NNX08AW56G, NNX09AU10G, NNX12AO93G and NNX15AU81G. This research has made use of data from the RoboPol programme, a collaboration between Caltech, the University of Crete, the Institute of Astrophysics-Foundation for Research and Technology (IA-FORTH), the Inter-University Centre for Astronomy and Astrophysics (IUCAA), the Max Planck Institute for Radioastronomy (MPIfR) and the Nicolaus Copernicus University, which was conducted at Skinakas Observatory in Crete, Greece. The Instituto Astrofísica Andalucía (IAA)-Consejo Superior de Investigaciones Científicas (CSIC) co-authors acknowledge financial support from the Spanish Ministerio de Ciencia e Innovacion (MCINN) through the ‘Center of Excellence Severo Ochoa‘ award for the Instituto de Astrofisica de Andalucia-CSIC (SEV-2017-0709). Acquisition and reduction of the POLAMI and Monitoring AGN with Polarimetry at the Calar Alto Telescopes (MAPCAT) data were supported in part by Ministerio de Ciencia e Innovación (MICINN) through grants AYA2016-80889-P and PID2019-107847RB-C44. The POLAMI observations were carried out at the IRAM 30 m Telescope. IRAM is supported by the National Institute of Sciences of the Universe (INSU)/Scientific Research National Center (CNRS) (France), Max-Planck-Gesellschaft (MPG) (Germany) and Instituto Geográfico Nacional (IGN) (Spain). The research at Boston University was supported in part by National Science Foundation grant AST-2108622, NASA Fermi Guest Investigator grant 80NSSC21K1917 and NASA Swift Guest Investigator grant 80NSSC22K0537. This study uses observations conducted with the 1.8 m Perkins Telescope Observatory in Arizona (USA), which is owned and operated by Boston University. Based on observations obtained at the Hale Telescope, Palomar Observatory as part of a continuing collaboration between the California Institute of Technology, NASA/Jet Propulsion Laboratory (JPL), Yale University and the National Astronomical Observatories of China. This research made use of Photutils, an Astropy package for detection and photometry of astronomical sources60. G.V.P. acknowledges support by NASA through the NASA Hubble Fellowship grant no. HST-HF2-51444.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555. Based on observations made with the Nordic Optical Telescope, owned in collaboration by the University of Turku and Aarhus University, and operated jointly by Aarhus University, the University of Turku and the University of Oslo, representing Denmark, Finland and Norway, the University of Iceland and Stockholm University at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias. The data presented here were obtained (in part) with ALFOSC, which is provided by the Instituto de Astrofisica de Andalucia (IAA) under a joint agreement with the University of Copenhagen and the Nordic Optical Telescope. V.K. thanks the Vilho, Yrjö and Kalle Väisälä Foundation. J.J. was supported by Academy of Finland project 320085. E.L. was supported by Academy of Finland projects 317636 and 320045. Part of the French contribution was supported by the CNRS and the French spatial agency (CNES). Based on observations collected at the Observatorio de Sierra Nevada, owned and operated by the Instituto de Astrofisica de Andalucia (IAA-CSIC). Based on observations collected at the Centro Astronomico Hispano-Aleman (CAHA), proposal 22A-2.2-015, operated jointly by Junta de Andalucia and Consejo Superior de Investigaciones Cientificas (IAA-CSIC).Peer reviewe

    From littérature engagée to engaged translation : staging Jean-Paul Sartre’s theatre as a challenge to Franco’s rule in Spain

    Get PDF
    The practice of creating translations that ‘rouse, inspire, witness, mobilize, and incite to rebellion’ is described by Maria Tymoczko, following Jean-Paul Sartre's littérature engagée, as ‘engaged translation’. In Spain, under the Franco dictatorship (1939–1975), the theatre became a site of opposition to his rule and the creation of ‘engaged’ translations of foreign plays was one of the ways in which alternative social and political realities were transmitted to local audiences. This was particularly evident during the so-called apertura period (1962–1969), when Spain's political leaders embraced more liberal and outward-facing cultural policies as part of their efforts to ensure the regime's continuity. Drawing on archival evidence from the state censorship files held at Archivo General de la Administración (AGA) in Alcalá de Henares, this article considers how ‘engaged’ translations of Sartre's theatre were employed as instruments of cultural opposition to the Spanish dictatorship. It also argues that an analysis of the files both helps us to understand the role of censorship in shaping an official version of the past, and shines a light on the memory of a little-studied aspect of cultural activism in the Spanish theatre.PostprintPeer reviewe
    corecore