8 research outputs found

    Numerical simulation of heat transfer in a pipe with non-homogeneous thermal boundary condition

    Get PDF
    Direct numerical simulations of heat transfer in a fully-developed turbulent pipe flow with circumferentially-varying thermal boundary conditions are reported. Three cases have been considered for friction Reynolds number in the range 180–360 and Prandtl number in the range 0.7–4. The temperature statistics under these heating conditions are characterized. Eddy diffusivities and turbulent Prandtl numbers for radial and circumferential directions are evaluated and compared to the values predicted by simple models. It is found that the usual assumptions made in these models provide reasonable predictions far from the wall and that corrections to the models are needed near the wall.O.F. and M.G.-V. were partially supported by Grant TRA2013-41103-P of the Spanish Ministry of Economy and Competitiveness. This grant includes FEDER funding

    Research network on interoperability of applications and software for networked enterprises in the Valencian Region (INTERVAL)

    Get PDF
    Enterprise interoperability is a tool for enhancing the competitiveness of firms, and its importance is brought out by the fact one of the EC’s strategic aims is to accomplish interoperability among European firms by the year 2010. Nevertheless, in the particular case of the Valencian Region (Spain), research into enterprise interoperability is still badly structured, fragmented, overlapping and, in many cases, practically non-existent. The INTERVAL project has been set up in an attempt to solve this problem. The scheme plans to carry out a series of initiatives aimed at integrating research activities and applying them to the complicated Valencian business sector. By so doing these companies would benefit from the application of knowledge created specifically for them and adapted to fit their characteristics. In this paper we present the details of the project, including its goals, aims, activities, results achieved, the methodology used to accomplish them, the economic and/or technological advantages, as well as possible applications and future lines of research

    Clinical consensus recommendations regarding non-invasive respiratory support in the adult patient with acute respiratory failure secondary to SARS-CoV-2 infection

    Get PDF
    La enfermedad por coronavirus 2019 (COVID-19) es una infección del tracto respiratorio causada por un nuevo coronavirus emergente que se reconoció por primera vez en Wuhan, China, en diciembre de 2019. Actualmente la Organización Mundial de la Salud (OMS) ha definido la infección como pandemia y existe una situación de emergencia sanitaria y social para el manejo de esta nueva infección. Mientras que la mayoría de las personas con COVID-19 desarrollan solo una enfermedad leve o no complicada, aproximadamente el 14% desarrollan una enfermedad grave que requiere hospitalización y oxígeno, y el 5% pueden requerir ingreso en una unidad de cuidados intensivos. En casos severos, COVID-19 puede complicarse por el síndrome de dificultad respiratoria aguda (SDRA), sepsis y shock séptico y fracaso multiorgánico. Este documento de consenso se ha preparado sobre directrices basadas en evidencia desarrolladas por un panel multidisciplinario de profesionales médicos de cuatro sociedades científicas españolas (Sociedad Española de Medicina Intensiva y Unidades Coronarias [SEMICYUC], Sociedad Española de Neumología y Cirugía Torácica [SEPAR], Sociedad Española de Urgencias y Emergencias [SEMES], Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor [SEDAR]) con experiencia en el manejo clínico de pacientes con COVID-19 y otras infecciones virales, incluido el SARS, así como en sepsis y SDRA. El documento proporciona recomendaciones clínicas para el soporte respiratorio no invasivo (ventilación no invasiva, oxigenoterapia de alto flujo con cánula nasal) en cualquier paciente con presentación sospechada o confirmada de COVID-19 con insuficiencia respiratoria aguda. Esta guía de consenso debe servir como base para una atención optimizada y garantizar la mejor posibilidad de supervivencia, así como permitir una comparación fiable de las futuras intervenciones terapéuticas de investigación que formen parte de futuros estudios observacionales o de ensayos clínicos.Coronavirus disease 2019 (COVID-19) is a respiratory tract infection caused by a newly emergent coronavirus, that was first recognized in Wuhan, China, in December 2019. Currently, the World Health Organization (WHO) has defined the infection as a global pandemic and there is a health and social emergency for the management of this new infection. While most people with COVID-19 develop only mild or uncomplicated illness, approximately 14% develop severe disease that requires hospitalization and oxygen support, and 5% require admission to an intensive care unit. In severe cases, COVID-19 can be complicated by the acute respiratory distress syndrome (ARDS), sepsis and septic shock, and multiorgan failure. This consensus document has been prepared on evidence-informed guidelines developed by a multidisciplinary panel of health care providers from four Spanish scientific societies (Spanish Society of Intensive Care Medicine [SEMICYUC], Spanish Society of Pulmonologists [SEPAR], Spanish Society of Emergency [SEMES], Spanish Society of Anesthesiology, Reanimation, and Pain [SEDAR]) with experience in the clinical management of patients with COVID-19 and other viral infections, including SARS, as well as sepsis and ARDS. The document provides clinical recommendations for the noninvasive respiratory support (noninvasive ventilation, high flow oxygen therapy with nasal cannula) in any patient with suspected or confirmed presentation of COVID-19 with acute respiratory failure. This consensus guidance should serve as a foundation for optimized supportive care to ensure the best possible chance for survival and to allow for reliable comparison of investigational therapeutic interventions as part of randomized controlled trials

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Extended proper orthogonal decomposition of non-homogeneous thermal fields in a turbulent pipe flow

    Get PDF
    This manuscript analyzes the role of coherent structures in turbulent thermal transport in pipe flows. A Proper Orthogonal Decomposition (POD) analysis is performed on a direct numerical simulation dataset with non-homogeneous boundary conditions, heated on the upper side, representative of solar receivers (Antoranz et al., 2015, Int. J. Heat Fluid Flow, 55). Three flow conditions are analyzed: with friction Reynolds number equal to 180 and Prandtl number equal to 0.7 and 4 and with friction Reynolds number equal to 360 and Prandtl number equal to 0.7. Both POD and extended POD modes are presented and compared. This allows to visualize the main flow modes in terms of both turbulent kinetic energy and temperature fluctuations, analyzing their contribution to the turbulent transport of heat. The POD analysis shows that the temperature fluctuations are described by a more compact modal subspace than the turbulent kinetic energy. The effect of increasing the Reynolds number is to produce a thinner boundary layer, with a slightly less compact representation of both kinetic energy and temperature fluctuations. The increase of the Prandtl number, instead, results in a thinner thermal boundary layer with a greater scale separation between thermal fluctuations and kinetic energy. Temperature POD modes together with velocity extended POD modes are used to analyze and quantify the mode contribution to turbulent thermal transport. Results show that the correlation between velocity and temperature is such that it is possible to describe roughly 100% of the turbulent heat transport and temperature fluctuations with only 40% of the kinetic energy. For the cases with Pr = 0.7, the first extended POD mode is a large vertical jet flanked by a pair of counter-rotating vortices near the heated part of the pipe. This single structure accounts for up to 10% of the turbulent heat transport.AI has been partially supported by the Grant DPI2016-79401-R funded by the Spanish State Research Agency (SRA) and European Regional Development Fund (ERDF). MGV and OF have been partially suported by grant TRA2013-41103-P of Spanish Mineco/UE Feder. AI also wish to thank Prof. Christophe Duwig for insightful discussions on EPOD.Publicad

    Low-Code as Enabler of Digital Transformation in Manufacturing Industry

    No full text
    Currently, enterprises have to make quick and resilient responses to changing market requirements. In light of this, low-code development platforms provide the technology mechanisms to facilitate and automate the development of software applications to support current enterprise needs and promote digital transformation. Based on a theory-building research methodology through the literature and other information sources review, the main contribution of this paper is the current characterisation of the emerging low-code domain following the foundations of the computer-aided software engineering field. A context analysis, focused on the current status of research related to the low-code development platforms, is performed. Moreover, benchmarking among the existing low-code development platforms addressed to manufacturing industry is analysed to identify the current lacking features. As an illustrative example of the emerging low-code paradigm and respond to the identified uncovered features, the virtual factory open operating system (vf-OS) platform is described as an open multi-sided low-code framework able to manage the overall network of a collaborative manufacturing and logistics environment that enables humans, applications, and Internet of Things (IoT) devices to seamlessly communicate and interoperate in the interconnected environment, promoting resilient digital transformation
    corecore