32 research outputs found

    Cavascope: the broadband seismological network of the New Hebrides subduction zone and its associated data base

    Get PDF
    Seismological Research Letters, v. 79, n. 4, p. 498-503, 2008. http://dx.doi.org/10.1785/gssrl.79.4.498International audienc

    Blast waves from violent explosive activity at Yasur Volcano, Vanuatu

    Get PDF
    Infrasonic and seismic waveforms were collected during violent strombolian activity at Yasur Volcano (Vanuatu). Averaging similar to 3000 seismic events showed stable waveforms, evidencing a low-frequency (0.1-0.3Hz) signal preceding similar to 5-6s the explosion. Infrasonic waveforms were mostly asymmetric with a sharp compressive (5-106Pa) onset, followed by a small long-lasting rarefaction phase. Regardless of the pressure amplitude, the ratio between the positive and negative phases was constant. These waveform characteristics closely resembled blast waves. Infrared imagery showed an apparent cold spherical front similar to 20 m thick, which moved between 342 and 405m/s before the explosive hot gas/fragments cloud. We interpret this cold front as that produced by the vapor condensation induced by the passage of the shock front. We suggest that violent strombolian activity at Yasur was driven by supersonic dynamics with gas expanding at 1.1 Mach number inside the conduit

    Structure of an active volcano associated with a resurgent block inferred from thermal mapping: The Yasur–Yenkahe volcanic complex (Vanuatu)

    Get PDF
    International audienceSubsurface thermal measurements provide a valuable tool to map hydrothermal-fluid release zones in active volcanic areas. On the Yasur–Yenkahe volcanic complex (Tanna Island, Vanuatu archipelago), fumaroles and hot springs abound, signs of upraising heat fluxes associated to a well-developed hydrothermal activity. Combination of high resolution mapping of ground thermal anomalies with geomorphological analysis allows the characterization of the structural relationships between the active Yasur volcano and the Yenkahe resurgent block.A complex system of heat release and hydrothermal fluid circulation below the Yasur–Yenkahe complex is evidenced. Circulation, though propagating vertically as a whole, is funneled by stratification. Thus, the main thermal fluid released is almost exclusively concentrated along structural limits that break the seals induced by the stratified nature of the ground. Three types of medium/high temperature anomalies have been evidenced: (1) broad hydrothermalized areas linked with planar stratification that favor lateral spreading, (2) linear segments that represent active faults, and (3) arcuate segments related to paleo-crater rims. The limit between the Yasur volcano and the Yenkahe resurgent block is characterized by an active fault system accommodating both the rapid uplift of the Yenkahe block and the overloading induced by the volcano weight. In such a setting, faults converge below the cone of Yasur, which acts as a focus for the faults. Evidence of such structures, sometimes hidden in the landscape but detected by thermal measurements, is critical for risk assessment of flank landslides

    Characteristics of the summit lakes of Ambae volcano and their potential for generating lahars

    Get PDF
    Volcanic eruptions through crater lakes often generate lahars, causing loss of life and property. On Ambae volcano, recent eruptive activities have rather tended to reduce the water volume in the crater lake (Lake Voui), in turn, reducing the chances for outburst floods. Lake Voui occupies a central position in the summit caldera and is well enclosed by the caldera relief. Eruptions with significantly higher magnitude than that of 1995 and 2005 are required for an outburst. A more probable scenario for lahar events is the overflow from Lake Manaro Lakua bounded on the eastern side by the caldera wall. Morphology and bathymetry analysis have been used to identify the weakest point of the caldera rim from which water from Lake Manaro Lakua may overflow to initiate lahars. The 1916 disaster described on south-east Ambae was possibly triggered by such an outburst from Lake Manaro Lakua. Taking into account the current level of Lake Manaro Lakua well below a critical overflow point, and the apparently low potential of Lake Voui eruptions to trigger lahars, the Ambae summit lakes may not be directly responsible for numerous lahar deposits identified around the Island

    magma and volatile supply to post collapse volcanism and block resurgence in siwi caldera tanna island vanuatu arc

    Get PDF
    V24C-04. Allen, S. R. (2005). Complex spatterand pumice-rich pyroclastic deposits from an andesitic caldera forming eruption: The Siwi pyroclastic sequence, Tanna, Vanuatu. Bulletin of Volcanology 67

    Thermal Remote Sensing for Global Volcano Monitoring: Experiences From the MIROVA System

    Get PDF
    Volcanic activity is always accompanied by the transfer of heat from the Earth's crust to the atmosphere. This heat can be measured from space and its measurement is a very useful tool for detecting volcanic activity on a global scale. MIROVA (Middle Infrared Observation of Volcanic Activity) is an automatic volcano hot spot detection system, based on the analysis of MODIS data (Moderate Resolution Imaging Spectroradiometer). The system is able to detect, locate and quantify thermal anomalies in near real-time, by providing, on a dedicated website (www.mirovaweb.it), infrared images and thermal flux time-series on over 200 volcanoes worldwide. Thanks to its simple interface and intuitive representation of the data, MIROVA is currently used by several volcano observatories for daily monitoring activities and reporting. In this paper, we present the architecture of the system and we provide a state of the art on satellite thermal data usage for operational volcano monitoring and research. In particular, we describe the contribution that the thermal data have provided in order to detect volcanic unrest, to forecast eruptions and to depict trends and patterns during eruptive crisis. The current limits and requirements to improve the quality of the data, their distribution and interpretation are also discussed, in the light of the experience gained in recent years within the volcanological community. The results presented clearly demonstrate how the open access of satellite thermal data and the sharing of derived products allow a better understanding of ongoing volcanic phenomena, and therefore constitute an essential requirement for the assessment of volcanic hazards. Peer reviewe

    Structure and evolution of an active resurgent dome evidenced by geophysical investigations: The Yenkahe dome-Yasur volcano system (Siwi caldera, Vanuatu)

    No full text
    Brothelande, E. et. al.In this contribution, we focus on one of the most active resurgences on Earth, that of the Yenkahe dome in the Siwi caldera (Tanna Island, Vanuatu), which is associated with the persistently active Yasur volcano. Gravity and magnetic surveys have been carried out over the past few years in the area, as well as electrical methods including electrical resistivity tomography (ERT), time domain electro-magnetics (TDEM) and self-potential (SP). These investigations were completed by thermometry, CO2 soil gas measurements, field observations and sampling. This multi-method approach allows geological structures within the caldera to be identified, as well as associated hydrothermal features. The global structure of the caldera is deduced from gravity data, which shows the caldera rim as a high density structure. Large lava fields, emplaced before and after the onset of resurgence, are evidenced by combined gravity, magnetic and resistivity signals. In the middle of the caldera, the Yenkahe dome apparently results from a combination of volcanic and tectonic events, showing that lava extrusion and resurgence have been operating simultaneously or alternately during the Siwi caldera post-collapse history. There is a clear distinction between the western and eastern parts of the dome. The western part is older and records the growth of an initial volcanic cone and the formation of a small caldera. This small caldera (paleo-Yasur caldera), partially filled with lava flows, is the present-day focus of volcanic activity and associated fluid circulation and alteration. The eastern part of the dome is presumably younger, and is characterized by intense, extensive hydrothermal alteration and activity. Its northern part is covered by lava flow piles and exhibits a shallow hydrothermal zone in ERT. The southern part has hydrothermal alteration and activity extending at least down to the base of the resurgent dome. This part of the dome is built up of low cohesion rock and is thus potentially prone to gravitational landslides. Lastly, while self-potential and temperature data suggest that widespread hydrothermal circulation occurs throughout almost all of the caldera, and possibly beyond, the most active parts of this hydrothermal system are associated with the dome. The presence of this active hydrothermal system is the clearest indicator that these methods can provide of a potential shallow magmatic body underneath the domeThis research was co-financed by the French Government “ANR ARC-Vanuatu: Programme Catastrophes Telluriques et Tsunamis” (ANR-06-CATT-02) and Laboratory of Excellence initiative n°ANR-10-LABX-0006, the Laboratoire Magmas et Volcans (LMV), the Laboratoire GĂ©oSciences RĂ©union, the RĂ©gion Auvergne and the European Regional Development Fund. Datasets are available at LMV. In addition, gravimetric data are available at International Gravimetric Bureau. This is Laboratory of Excellence ClerVolc contribution number 171 and IPGP contribution number 3654.Peer reviewe

    Earthquake-volcano interaction imaged by coda wave interferometry

    No full text
    Large earthquakes are often assumed to influence the eruptive activity of volcanoes. A major challenge to better understand the causal relationship between these phenomena is to detect and image, in detail, all induced changes, including subtle, non-eruptive responses. We show that coda wave interferometry can be used to image such earthquake-induced responses, as recorded at Yasur volcano (Vanuatu) following a magnitude 7.3 earthquake which occurred 80 km from its summit. We use repeating Long-Period events to show that the earthquake caused a sudden seismic velocity drop, followed by a slow partial recovery process. The spatial distribution of the response amplitude indicates an effect centered on the volcano. Our result demonstrates that, even if no major change in eruptive activity is observed, volcanoes will be affected by the propagation of large amplitude seismic waves through their structure, suggesting that Earthquake-volcano interaction is likely a more common phenomenon than previously believed. Citation: Battaglia, J., J.-P. Metaxian, and E. Garaebiti (2012), Earthquake-volcano interaction imaged by coda wave interferometry, Geophys. Res. Lett., 39, L11309, doi:10.1029/2012GL052003

    Strombolian surface activity regimes at Yasur volcano, Vanuatu, as observed by Doppler radar, infrared camera and infrasound

    No full text
    In late 2008 we recorded a continuous multi-parameter data set including Doppler radar, infrared and infrasound data at Yasur volcano, Vanuatu. Our recordings cover a transition in explosive style from ash-rich to ash-free explosions followed again by a phase of high ash discharge. To assess the present paradigm of Strombolian behavior in this study we investigate the geophysical signature of these different explosive episodes and compare our results to observations at Stromboli volcano, Italy. To this end we characterize Yasur's surface activity in terms of material movement, temperature and excess pressure. The joint temporal trend in these data reveals smooth variations of surface activity and regime-like persistence of individual explosion forms over days. Analysis of all data types shows ash-free and ash-rich explosive styles similar to those found at Stromboli volcano. During ash-free activity low echo powers, high explosion velocities and high temperatures result from the movement of isolated hot ballistic clasts. In contrast, ash-rich episodes exhibit high echo powers, low explosion velocities and low temperatures linked to the presence of colder ash-rich plumes. Furthermore ash-free explosions cause high excess pressure signals exhibiting high frequencies opposed to low-amplitude, low-frequency signals accompanying ash-rich activity. To corroborate these findings we compare fifteen representative explosions of each explosive episode. Explosion onset velocities derived from Doppler radar and infrared camera data are in excellent agreement and consistent with overall observations in each regime. Examination of infrasound recordings likewise confirms our observations, although a weak coupling between explosion velocity and excess pressure indicates changes in wave propagation. The overall trend in explosion velocity and excess pressure however demonstrates a general correlation between explosive style and explosion intensity, and points to stability of the uppermost conduit on timescales shorter than at Stromboli volcano
    corecore