2,479 research outputs found

    Molecular and Clinical Implications of IDH1 and EGFR Mutations in Gliomas

    Get PDF
    To improve the clinical outcome of glioma patients, there is considerable need to discover novel treatment options for patients. This firstly requires better understanding of the molecular mechanism of the driver mutations in each subgroup of gliomas. In this thesis, we report on the creation of in vitro and in vivo model systems for understanding the function of driver mutation IDH1 in LGG. We further studied the molecular pathways affected by driver mutations in LGG and GBM. For both IDH1 and EGFR mutations, we identified novel binding partners. Surgical resection of recurrent GBMs is performed only in a minority of patients and treatment strategies using targeted-therapy are heavily dependent on the molecular data of primary tumors. In this thesis, we showed that most of EGFR amplification in the primary tumor was retained at tumor recurrence therefore indicates that molecular data obtained in the primary tumor can be used to predict the EGFR status of the recurrent tumor. The final chapter of this thesis describes gene-expression analysis of samples included in the EORTC22033-26033 clinical trial. We showed that previ- ously de ned intrinsic glioma subtypes, subtypes based on unsupervised expression analysis of gene expression data, are prognostic for progression-free survival in EORTC22033-26033 clinical trial samples

    Forest structure, stand composition, and climate-growth response in montane forests of Jiuzhaigou National Nature Reserve, China.

    Get PDF
    Montane forests of western China provide an opportunity to establish baseline studies for climate change. The region is being impacted by climate change, air pollution, and significant human impacts from tourism. We analyzed forest stand structure and climate-growth relationships from Jiuzhaigou National Nature Reserve in northwestern Sichuan province, along the eastern edge of the Tibetan plateau. We conducted a survey to characterize forest stand diversity and structure in plots occurring between 2050 and 3350 m in elevation. We also evaluated seedling and sapling recruitment and tree-ring data from four conifer species to assess: 1) whether the forest appears in transition toward increased hardwood composition; 2) if conifers appear stressed by recent climate change relative to hardwoods; and 3) how growth of four dominant species responds to recent climate. Our study is complicated by clear evidence of 20(th) century timber extraction. Focusing on regions lacking evidence of logging, we found a diverse suite of conifers (Pinus, Abies, Juniperus, Picea, and Larix) strongly dominate the forest overstory. We found population size structures for most conifer tree species to be consistent with self-replacement and not providing evidence of shifting composition toward hardwoods. Climate-growth analyses indicate increased growth with cool temperatures in summer and fall. Warmer temperatures during the growing season could negatively impact conifer growth, indicating possible seasonal climate water deficit as a constraint on growth. In contrast, however, we found little relationship to seasonal precipitation. Projected warming does not yet have a discernible signal on trends in tree growth rates, but slower growth with warmer growing season climates suggests reduced potential future forest growth

    Effects of substituents in polyvinylcarbazole structures on their optical properties

    Get PDF
    Absorption, photoluminescence, and photoluminescence excitation spectra of solutions and thin films of N-vinylcarbazole polymers and copolymers with various substituents directly on the carbazole moiety and on the polymer chain were studied comprehensively. Polymers that were used previously to develop polymer composites with polymethine dyes having photosensitivity over a broad spectral range including the visible and near-IR regions were selected for the studies

    Properties of the Resonance Lambda(1520) as seen in the Forward Electroproduction at JLab Hall A

    Full text link
    High-resolution spectrometer measurements of the reaction H(e,e' K+)X at small Q2 are used to extract the mass and width of the Lambda(1520). We investigate dependence of the resonance parameters on different parametrizations of the background and the resonance peak itself. Our final values for the Breit-Wigner parameters are M=1520.4+-0.6(stat)+-1.5(syst) MeV and Gamma=18.6+-1.9(stat)+-1(syst) MeV. The width appears to be more sensitive to the assumptions than the mass. We also estimate, for the first time, the pole position for this resonance and find that both the pole mass and width seem to be smaller than their Breit-Wigner values.Comment: 4 pages, 1 figure, to appear in the proceedings of MENU 201

    Spin Precession and Time-Reversal Symmetry Breaking in Quantum Transport of Electrons Through Mesoscopic Rings

    Full text link
    We consider the motion of electrons through a mesoscopic ring in the presence of spin-orbit interaction, Zeeman coupling, and magnetic flux. The coupling between the spin and the orbital degrees of freedom results in the geometric and the dynamical phases associated with a cyclic evolution of spin state. Using a non-adiabatic Aharonov-Anandan phase approach, we obtain the exact solution of the system and identify the geometric and the dynamical phases for the energy eigenstates. Spin precession of electrons encircling the ring can lead to various interference phenomena such as oscillating persistent current and conductance. We investigate the transport properties of the ring connected to current leads to explore the roles of the time-reversal symmetry and its breaking therein with the spin degree of freedom being fully taken into account. We derive an exact expression for the transmission probability through the ring. We point out that the time-reversal symmetry breaking due to Zeeman coupling can totally invalidate the picture that spin precession results in effective, spin-dependent Aharonov-Bohm flux for interfering electrons. Actually, such a picture is only valid in the Aharonov-Casher effect induced by spin-orbit interaction only. Unfortunately, this point has not been realized in prior works on the transmission probability in the presence of both SO interaction and Zeeman coupling. We carry out numerical computation to illustrate the joint effects of spin-orbit interaction, Zeeman coupling and magnetic flux. By examining the resonant tunneling of electrons in the weak coupling limit, we establish a connection between the observable time-reversal symmetry breaking effects manifested by the persistent current and by the transmission probability. For a ring formed by two-dimensional electron gas, weComment: 20 pages, 5 figure

    Idh1-mutated transgenic zebrafish lines: An in-vivo model for drug screening and functional analysis

    Get PDF
    Introduction The gene encoding isocitrate dehydrogenase 1 (IDH1) is frequently mutated in several tumor types including gliomas. The most prevalent mutation in gliomas is a missense mutation leading to a substitution of arginine with histidine at the residue 132 (R132H). Wild type IDH1 catalyzes oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG) whereas mutant IDH1 converts α-KG into D2-hydroxyglutarate (D2HG). Unfortunately, there are few in vivo model systems for IDH-mutated tumors to study the effects of IDH1 mutations in tumor development. We have therefore created transgenic zebrafish lines that express various IDH1 mutants. Materials and methods IDH1 mutations (IDH1R132H, IDH1R132C and loss-of-function mutation IDH1G70D), IDH1wildtype or eGFP were cloned into constructs with several brain-specific promoters (Nestin, Gfap or Gata2). These constructs were injected into fertilized zebrafish eggs at the one-cell stage. Results In total more than ten transgenic zebrafish lines expressing various brain-specific IDH1 mutations were created. A significant increase in the level of D2HG was observed in all transgenic lines expressing IDH1R132C or IDH1R132H, but not in any of the lines expressing IDH1wildtype, IDH1G70D or eGFP. No differences in 5-hydroxymethyl cytosine and mature collagen IV levels were observed between wildtype and mutant IDH1 transgenic fish. To our surprise, we failed to identify any strong phenotype, despite increased levels of the oncome-tabolite D2HG. No tumors were observed, even when backcrossing with tp53-mutant fish which suggests that additional transforming events are required for tumor formation. Elevated D2HG levels could be lowered by treatment of the transgenic zebrafish with an inhibitor of mutant IDH1 activity. Conclusions We have generated a transgenic zebrafish model system for mutations in IDH1 that can be used for functional analysis and drug screening. Our model systems help understand the biology of IDH1 mutations and its role in tumor formation

    Mutation and drug-specific intracellular accumulation of EGFR predict clinical responses to tyrosine kinase inhibitors

    Get PDF
    Background: Clinical responses to EGFR tyrosine kinase inhibitors (TKIs) are restricted to tumors harboring specific activating mutations and even then, not all tyrosine kinase inhibitors provide clinical benefit. All TKIs however, effectively inhibit EGFR phosphorylation regardless of the mutation present. Methods: High-throughput, high-content imaging analysis, western blot, Reversed phase protein arrays, mass spectrometry and RT-qPCR. Findings: We show that the addition of TKIs results in a strong and rapid intracellular accumulation of EGFR. This accumulation mimicked clinical efficacy as it was observed only in the context of the combination of a TKI-sensitive mutation with a clinically effective (type I) TKI. Intracellular accumulation of EGFR was able to predict response to gefitinib in a panel of cell-lines with different EGFR mutations. Our assay also predicted clinical benefit to EGFR TKIs on a cohort of pulmonary adenocarcinoma patients (hazard ratio 0.21, P=0.0004 [Cox proportional hazard model]) and could predict the clinical response in patients harboring rare mutations with unknown TKI-sensitivity. All investigated TKIs, regardless of clinical efficacy, inhibited EGFR phosphorylation and downstream pathway activation, irrespective of the mutation present. Intracellular accumulation of EGFR depended on a continued presence of TKI indicating (type I) TKIs remain associated with the protein even after its dephosphorylation. Accumulation therefore is likely caused by two consecutive conformational changes, induced by both activating mutation and TKI, that combined block EGFR-membrane recycling. Interpretation: We report on an assay that mimics the discrepancy between molecular and clinical activity of EGFR-TKIs, which may allow response prediction in vitro and helps understand the mechanism of effective inhibitors

    Inhibition of Cardiac Sympathetic Afferent Reflex and Sympathetic Activity by Baroreceptor and Vagal Afferent Inputs in Chronic Heart Failure

    Get PDF
    BACKGROUND: Cardiac sympathetic afferent reflex (CSAR) contributes to sympathetic activation and angiotensin II (Ang II) in paraventricular nucleus (PVN) augments the CSAR in vagotomized (VT) and baroreceptor denervated (BD) rats with chronic heart failure (CHF). This study was designed to determine whether it is true in intact (INT) rats with CHF and to determine the effects of cardiac and baroreceptor afferents on the CSAR and sympathetic activity in CHF. METHODOLOGY/PRINCIPAL FINDINGS: Sham-operated (Sham) or coronary ligation-induced CHF rats were respectively subjected to BD+VT, VT, cardiac sympathetic denervation (CSD) or INT. Under anesthesia, renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded, and the CSAR was evaluated by the RSNA and MAP responses to epicardial application of capsaicin. Either CSAR or the responses of RSNA, MAP and CSAR to Ang II in PVN were enhanced in CHF rats treated with BD+VT, VT or INT. Treatment with VT or BD+VT potentiated the CSAR and the CSAR responses to Ang II in both Sham and CHF rats. Treatment with CSD reversed the capsaicin-induced RSNA and MAP changes and the CSAR responses to Ang II in both Sham and CHF rats, and reduced the RSNA and MAP responses to Ang II only in CHF rats. CONCLUSIONS: The CSAR and the CSAR responses to Ang II in PVN are enhanced in intact CHF rats. Baroreceptor and vagal afferent activities inhibit CSAR and the CSAR responses to Ang II in intact Sham and CHF rats

    Characterizing temporary hydrological regimes at a European scale

    Get PDF
    Monthly duration curves have been constructed from climate data across Europe to help address the relative frequency of ecologically critical low flow stages in temporary rivers, when flow persists only in disconnected pools in the river bed. The hydrological model is 5 based on a partitioning of precipitation to estimate water available for evapotranspiration and plant growth and for residual runoff. The duration curve for monthly flows has then been analysed to give an estimate of bankfull flow based on recurrence interval. The corresponding frequency for pools is then based on the ratio of bank full discharge to pool flow, arguing from observed ratios of cross-sectional areas at flood 10 and low flows to estimate pool flow as 0.1% of bankfull flow, and so estimate the frequency of the pool conditions that constrain survival of river-dwelling arthropods and fish. The methodology has been applied across Europe at 15 km resolution, and can equally be applied under future climatic scenarios
    corecore