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General Introduction

11. DIFFUSE GLIOMAS

Diffuse gliomas are the most common type of malignant brain tumors in adults, with 

an incidence of ~5 per 100 000 adults in the United States each year (1, 2). In the past 

decade, diffuse gliomas were classi�ed into astrocytoma, oligodendroglioma and oli-

goastrocytoma based on histological features described by the World Health Organiza-

tion (WHO) in 2007 (3). Diffuse gliomas are graded from II to IV. Grade II/III gliomas 

are classi�ed as low grade gliomas (LGG) (3). Grade IV diffuse gliomas are the most 

aggressive form of gliomas, also known as glioblastoma multiforme (GBM). GBMs are 

further strati�ed into primary (those that arise de novo, and comprise ~90% of all 

GBMs) and secondary GBMs (those that progress from gliomas of lower grades).

Treatment decisions are dependent on the subtype of gliomas. Standard treatments 

for diffuse glioma patients include surgical resection followed by either radiotherapy 

(RT), chemotherapy (usually temozolomide or TMZ) or a combination thereof (4-6). 

However, current treatment strategy has limited improvement on the overall survival 

of patients (~6 month for RT and 3 months for TMZ in GBM) and almost all patients 

eventually die from disease progression (7-9).

A major problem of the WHO 2007 classi�cation system based on histological appear-

ance has been the signi�cant intra- and inter-observer variation (10, 11). The techno-

logical advances in sequencing technology have led to the identi�cation of almost all 

cancer genes in gliomas. Interestingly some of the genetic changes segregate in de�ned 

histological subtypes but correlate better with patient survival than the histological 

classi�cation of gliomas (12-15). For example, isocitrate dehydrogenase 1/2 (IDH1/2) 

mutations occur in 60-80% of Grade II/III gliomas. However, tumors with wildtype 

IDH have a signi�cantly worse prognosis compared with IDH-mutated, even within 

tumors of identical grade (Fig. 1). Primary GBMs (pGBM), are mainly IDH-wildtype 

and they have a median overall survival of 9.9 months (16). Secondary GBMs (sGBM) 

account for 10% of GBMs and they often harbor mutations in IDH and have a better 

prognosis compared with the IDH wild-type GBMs, with a median overall survival of 

24 months (16).

1p/19q co-deletion has been associated with oligodendroglial histological features and 

this patient group was more responsive to chemotherapy than those with intact 1p/19q 

(6, 17, 18). Molecular alterations in the alpha thalassemia/mental retardation syndrome 

X-linked (ATRX) or tp53 gene have been identi�ed in a more astrocytic-like subset of

Grade II/III gliomas and are almost always mutually exclusive with 1p/19q co-deleted

gliomas.
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The improvement in prognostic classi�cation of gliomas by the molecular markers 

has led to an update of the WHO classi�cation in 2016. In this update, gliomas are 

�rstly divided into astrocytoma, oligoastrocytoma, oligodendroglioma and GBM based 

on histology. They are further classi�ed using molecular markers including 1p/19q 

co-deletion, mutations in IDH1/2 and alpha thalassemia/mental retardation syndrome 

X-linked (ATRX)/TP53 (Fig. 2) (16). For example, the combination of mutations in 

both IDH and TP53 de�nes a molecular astrocytic group of gliomas and the combina-

tion of IDH mutations and 1p/19q co-deletion de�nes a molecular oligodendritic group 

of gliomas. Within histologically identi�ed GBMs, IDH mutational status separates 

pGBM from sGBM.

Besides the molecular markers incorporated in the WHO 2016 classi�cation for central 

nervous system (CNS) tumors, other molecular markers have been identi�ed that are 

signi�cantly associated with classi�cation and clinical outcome (15). For example, 

increased telomerase activity has been discovered in several malignancies including 

melanomas, liposarcomas and hepatocellular carcinomas (19-21). In diffuse gliomas, 

IDH mutant
wild-type IDH

Su
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in

g

Months Survival
Figure 1. Diffuse glioma patients with mutations in IDH have a better prognosis than the ones with wild-
type IDH (TCGA database_283 LGG samples).
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mutations in two different genes result in an increased telomere length: mutations in 

the ATRX gene and in the telomerase reverse transcriptase (TERT) promoter. Mutations 

in the TERT promoter region are present in almost all GBMs and oligodendroglial 

tumors (28, 29).

Apart from the prognostic biomarkers listed above, there are only few biomarkers that 

predict response to treatment. Of those, MGMT-promoter methylation is the most 

robust and is predictive of response to TMZ. TMZ is a commonly used chemotherapy 

agent which catalyzes alkylation of thymine and guanine, leading to DNA damages 

and initiation of apoptosis (22). O6-methylguanine-DNA methyltransferase (MGMT) 

mediates DNA damage repair system by removing alkyl groups and thus prevents 

apoptosis (23). Therefore patients with MGMT loss showed relatively better responses 

to TMZ treatment (24). In diffuse gliomas, MGMT promoter methylation has been 

identi� ed in about 80% LGGs and 40% GBMs (25).

2. ISOCITRATE DEHYDROGENASE

Isocitrate dehydrogenase (IDH) catalyzes conversion of isocitrate to α-ketoglutarate 

(αKG) using NAD(P)+ as a co-factor (Fig. 3, left panel) (26). IDH has three isozymes, 

IDH1, IDH2 and IDH3. Both IDH1 and IDH2 function as homodimers using NADP+ 

as co-factors. They differ with respect to their subcellular localization with IDH1 being 

localized in the cytoplasm and peroxisomes and IDH2 in mitochondria. IDH3 func-

Histology Astrocytoma OligodendrogliomaOligoastrocytoma Glioblastoma Multiforme

IDH status

1p/19q and 
other genetic 
parameters

IDH mutant IDH wild-type IDH mutant IDH wild-type

ATRX loss*
TP53 mutation* 1p/19q co-deletion

Diffuse astrocytoma, IDH mutant 

After exclusion of other entities:
Diffuse astrocytoma, IDH wild-type
oligodendroglioma, NOS 

Glioblastoma, IDH mutant

Glioblastoma, IDH wild-typeOligodendroglioma, IDH 
mutant and 1p/19q codeleted

Molecular 
subgroups of 
glioma Diffuse astrocytoma, NOS

Oligodendroglioma, NOS
Oligoastrocytoma, NOS
Glioblastoma, NOS

* : Characteristic but not required for diagnosis
NOS: not otherwise specified

Genetic testing not 
done or inconclusive

Figure 2. 2016 WHO classifi cation for diffused gliomas using histological and genetic features (16).
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tions as a heterotetramer in the mitochondria using NAD+ as its oxidizing agent and 

is involved in the citric acid cycle for ATP production (27).

In 2008, one of the �rst genomic sequencing projects in GBM identi�ed mutations in 

IDH1 in 12% of these tumors (28). As mentioned, IDH1 mutations correlated with 

better survival in GBM patients. Subsequent whole genome sequencing efforts have 

identi�ed IDH1/2 mutations in multiple malignancies including LGGs, acute myeloid 

leukemia (AML), chondrosarcomas and cholangiocarcinomas (29-32). IDH mutations 

are a hallmark of LGGs. In gliomas, most of the identi�ed mutations in IDH are in 

IDH1 and over 90% of reported IDH1 mutations are a missense mutation, where argi-

nine at position 132 is replaced by a histidine (IDH1R132H). Some patients in whom no 

mutations in IDH1 were identi�ed harbored mutations in the IDH2 gene. Mutations 

in IDH2 affect the amino acid R172, an amino acid that is analogous to R132 in IDH1 

(29).

The IDH1R132H mutations are mostly heterozygous and the generated mutant enzyme 

is likely to dimerize with the wildtype counterpart (Fig. 3, right panel). Mutant IDH1 

uses αKG as a substrate to produce D-2hydroxyglutarate or D2HG (33). D2HG shares 

structural similarity with αKG and the accumulation of D2HG inhibits, via competitive 

inhibition, a number of αKG-dependent enzymes. As a cellular key component, αKG 

is involved in a wide range of pathways including regulating epigenetic modi�cations. 

Mitochondrion

IDH2

IDH2

αKG

IDH1

IDH1

αKG

NADPH

NADP+

Cytoplasm

IDH3

αKG

NADHIsocitrate

NAD+

IDH3

IDH3

IDH3

IDH1

IDH1m

Nucleus

IDH1 mutant in tumor cells

IDH in normal cells

2HG

NADPH

NADPH

Isocitrate

Isocitrate

NADP+

NADPH

Isocitrate

αKG

2HG

2HG
2HG

NADP+

NADP+

NADP+

NADP+ NADP+

NADPH

Figure 3. IDH in normal and tumor cells



13

General Introduction

1Examples include Tet methylcytosine dioxygenase 2 (TET2) and Lysine Demethylase 

4A (KDM4A)/JMJD2A, enzymes involved in the demethylation of DNA and histones 

(34-36). The increased level of D2HG also affects the hydroxylation of HIF-1α by 

inhibiting the Egl nine homolog 1 (EGLN1) prolyl hydroxylase (37), which leads to 

an upregulation of HIF1α-inducible genes including vascular endothelial growth factor 

(VEGF) (38, 39). It should be noted that, due to the different af�nities for D2HG, 

the αKG-dependent enzymes are affected at various levels (35, 36). As a result of the 

competitive inhibition of αKG-dependent oxygenases by D2HG, IDH1-mutant cells 

ultimately remain in an undifferentiated state (40).

Since IDH1 is thought to play a role in oncogenesis and D2HG production is the key 

activity of mutant IDH1, several groups have tried to identify mutant IDH1 inhibi-

tors. The �rst report came from Popovici-Muller et al. describing a series compounds 

with almost 90% inhibition of D2HG production. The most promising compound also 

proved active in a U87 glioblastoma xenograft mouse model (41, 42). IDH1 and IDH2 

inhibitors are currently being tested in clinical trials (43). A recent clinical trial for 

relapsed or refractory AML patients showed that treatment with IDH1 inhibitor, ivo-

sidenib was correlated with persistent remission (44). Results of the trials for gliomas 

have not been reported yet.

However, targeting IDH mutations by decreasing D2HG production has been rising 

concerns and in vitro and in vivo studies have shown quite con�icting results. For 

example, some research groups showed decreased proliferation, less colony formation 

and increased differentiation after the inhibitor treatment to glioma, AML and chon-

drosarcoma cell lines and their corresponding xenograft models (45-47). On the other 

hand, in the sarcoma cell line H1060 that harbors an endogenous IDH1R132C mutation, 

inhibiting D2HG production did not affect the oncogenic properties such as prolifera-

tion or migration (48). Additionally, Molenaar et al. suggested that D2HG sensitizes 

tumor cells to ionizing radiation (IR) and inhibiting D2HG production resulted in 

decreased sensitivity to IR (49). Taken all studies together, other therapeutic targets or 

treatment strategies for IDH-mutated tumors remain to be characterized.

Understanding the molecular mechanism of gliomagenesis driven by IDH mutations is 

a key to seeking potential therapeutic targets. However, understanding the molecular 

mechanisms of mutant IDH1 has been hampered by the lack of good in vitro and in vivo 

model systems. It has been suggested that glioma cells with IDH1 mutations cannot be 

propagated in a standard laboratory setting (50, 51), though few successful cultures 

have been reported (52).
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To date, only few animal models have been described for IDH mutations in gliomas. 

One of the �rst attempts using a brain-speci�c IDH1-mutant knock-in mouse model 

was embryonically lethal due to D2HG-induced defects in collagen maturation (53). 

No glial tumors were formed in this model system.

In 2013, Leenders et al. reported on glioma xenografts using a patient derived high-

grade oligodendroglioma cell line with IDH1R132H mutation (54). In a Drosophila 

model, UAS-Idh-R195H, an IDH1R132H mutation homologue, was induced, which 

resulted in activation of tp53 expression and subsequently led to neuronal degenera-

tion and defects in wing expansion (55). Nevertheless, none of the published in vivo 

model systems have generated gliomas by introducing CNS-speci�c expression of IDH 

mutations alone (53, 55-57).

3. EPIDERMAL GROWTH FACTOR RECEPTOR

Epidermal growth factor receptor or EGFR, is a transmembrane receptor tyrosine kinase 

protein. The protein is activated following binding of ligands which include epidermal 

growth factor (EGF), transforming growth factor α (TGFα) and amphiregulin (58, 59). 

Activated EGFR triggers several signaling cascades including MAPK, AKT and STAT 

pathways. Activation of these pathways ultimately promote cell differentiation and 

proliferation (60, 61). Abnormal EGFR activities have been identi�ed in several cancer 

types including gliomas and pulmonary adenocarcinoma (62, 63). EGFR ampli�ca-

tion and mutations have been reported in about 57% pGBM patients (64). High copy 

DNA ampli�cation in gliomas is often seen as double-minutes (extrachromosomal 

copies of the gene). A subset of GBMs with EGFR ampli�cation harbor additional 

mutations such as EGFR variant III (EGFRvIII, an intragenic deletion of exons 2-7). 

This mutation results in constitutive activation of the receptor (65). Targeted therapies 

for EGFR including monoclonal antibodies or tyrosine kinase inhibitors have been 

tested in multiple phase II clinical trials for pGBM patients but did not show signi�cant 

improvement on overall survival (66, 67).

4. SCOPE OF THIS THESIS

To improve the clinical outcome of glioma patients, there is considerable need to dis-

cover novel treatment options for patients. This �rstly requires better understanding of 

the molecular mechanism of the driver mutations in each subgroup of gliomas.
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1In Chapter 2 and 3, we report on the creation of in vitro and in vivo model systems 

for understanding the function of driver mutation IDH1 in LGG. This includes (a) a 

transgenic zebra�sh model with CNS-speci�c expression of mutations in IDH1 and (b) 

short-term primary glioma culture systems using gliomas with IDH1 mutations. Both 

model systems showed increased levels of D2HG due to mutations in IDH1 and can 

be used as drug screen model systems targeting mutations in IDH1. Our in vivo model 

suggests that expression of IDH1 mutation alone at the early embryonic stage during 

zebra�sh development is insuf�cient to promote gliomagenesis and even combining 

IDH1 mutation with Tp53 mutation did not increase the tumorigenesis incidences.

In Chapters 4 and 5, we further studied the molecular pathways affected by driver 

mutations in LGG and GBM. For both IDH1 and EGFR mutations, we identi�ed novel 

binding partners. We discovered that NF-kB, is a novel pathway affected by D2HG 

produced by mutant IDH1 enzyme, which ultimately may explain why IDH-mutated 

glioma cells keep on proliferating. To study tumor-speci�c effects of EGFR mutations 

in GBM, we made different EGFR clones harboring mutations that are either common 

to GBM or lung cancer. Our results suggest that each mutation has different binding 

partners and subsequent activation of downstream pathways. These results argue for 

the development of mutation speci�c inhibitors.

Surgical resection of recurrent GBMs is performed only in a minority of patients and 

treatment strategies using targeted-therapy are heavily dependent on the molecular 

data of primary tumors. In Chapter 6 we showed that most of EGFR ampli�cation in 

the primary tumor was retained at tumor recurrence therefore indicates that molecular 

data obtained in the primary tumor can be used to predict the EGFR status of the 

recurrent tumor. However, half of the EGFRvIII expression in the initial tumor is not 

retained in the recurrent tumor. A �nal chapter describes gene-expression analysis 

of samples included in the EORTC22033-26033 clinical trial. We showed that previ-

ously de�ned intrinsic glioma subtypes, subtypes based on unsupervised expression 

analysis of gene expression data, are prognostic for progression-free survival in 

EORTC22033-26033 clinical trial samples.
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ABSTRACT

Introduction

The gene encoding isocitrate dehydrogenase 1 (IDH1) is frequently mutated in several 

tumor types including gliomas. The most prevalent mutation in gliomas is a missense 

mutation leading to a substitution of arginine with histidine at the residue 132 (R132H). 

Wild type IDH1 catalyzes oxidative decarboxylation of isocitrate to α-ketoglutarate 

(α-KG) whereas mutant IDH1 converts α-KG into D2-hydroxyglutarate (D2HG). Un-

fortunately, there are few in vivo model systems for IDH-mutated tumors to study the 

effects of IDH1 mutations in tumor development. We have therefore created transgenic 

zebra�sh lines that express various IDH1 mutants.

Materials and methods

IDH1 mutations (IDH1R132H, IDH1R132C and loss-of-function mutation IDH1G70D), 

IDH1wildtype or eGFP were cloned into constructs with several brain-speci�c promoters 

(Nestin, Gfap or Gata2). These constructs were injected into fertilized zebra�sh eggs 

at the one-cell stage.

Results

In total more than ten transgenic zebra�sh lines expressing various brain-speci�c IDH1 

mutations were created. A signi�cant increase in the level of D2HG was observed 

in all transgenic lines expressing IDH1R132C or IDH1R132H, but not in any of the lines 

expressing IDH1wildtype, IDH1G70D or eGFP. No differences in 5-hydroxymethyl cytosine 

and mature collagen IV levels were observed between wildtype and mutant IDH1 

transgenic �sh. To our surprise, we failed to identify any strong phenotype, despite 

increased levels of the oncometabolite D2HG. No tumors were observed, even when 

backcrossing with tp53-mutant �sh which suggests that additional transforming events 

are required for tumor formation. Elevated D2HG levels could be lowered by treatment 

of the transgenic zebra�sh with an inhibitor of mutant IDH1 activity.

Conclusions

We have generated a transgenic zebra�sh model system for mutations in IDH1 that can 

be used for functional analysis and drug screening. Our model systems help understand 

the biology of IDH1 mutations and its role in tumor formation.
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INTRODUCTION

Somatic missense mutations in the gene encoding isocitrate dehydrogenase 1 (IDH1) 

or IDH2 are frequently identi�ed in various malignancies including gliomas, acute 

myeloid leukemia, cholangiocarcinoma, chondrosarcoma and sporadically in various 

other cancer types (1-8). In gliomas, IDH1 mutations are one of the earliest genetic 

changes identi�ed, preceding other common genetic aberrations such as 1p19q co-

deletion, and are therefore present in virtually all tumor cells (9-11). IDH1 and IDH2 

mutations are almost always mutually exclusive. For glioma patients, presence of IDH 

mutations is of clinical relevance as patients harboring IDH mutated gliomas have a 

better survival compared to those with wildtype IDH. The prognostic signi�cance of 

IDH mutations has led to its incorporation in the WHO 2016 update to classify gliomas 

(12). Mutations in IDH1 are almost always heterozygous point mutations affecting the 

arginine at position 132 (R132). Approximately 90% of these mutations in gliomas 

are IDH1R132H.

Wildtype IDH1 is a cytoplasmic enzyme that catalyzes the oxidative decarboxylation of 

isocitrate to α-ketoglutarate (αKG) and uses NADP+ as a co-factor (13, 14). The mutant 

enzyme however, uses αKG as a substrate to produce D-2-hydroxyglutarate (D2HG) 

with concomitant consumption of NADPH (15). The resulting accumulation of D2HG 

then competitively inhibits a spectrum of αKG-dependent enzymes including TET2, 

JMJD2 and various prolyl hydroxylases (16-18). This inhibition ultimately facilitates 

carcinogenesis by retaining cells in an undifferentiated and stem-like state. Because 

of the oncogenic role of mutant IDH1, several groups have developed compounds that 

speci�cally inhibit the activity of the mutant enzyme (19, 20). These inhibitors are 

currently being tested in clinical trials.

Several IDH1R132H conditional knock-in (KI) mouse models were recently generated to 

further study the role of the mutant enzyme in an in vivo model system. Unfortunately 

most mice in which IDH1 mutations were conditionally expressed either died before 

birth or rapidly after induction of expression of the mutant enzyme (21). Nevertheless, 

expression of mutant IDH1 results in a retention of cells in an undifferentiated state 

or induces pre-cancerous lesions in cartilage or the SVZ (22-24). Despite these signs 

of early tumor formation, no gliomas in any of the three mouse models were thus-far 

identi�ed, also not when backcrossing into a Tp53 -mutant background (23, 25).

To further study the effects of IDH1 mutations in tumor development, we have gen-

erated transgenic zebra�sh that express IDH1 mutants under the control of various 

CNS-speci�c promoters.
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MATERIALS AND METHODS

Cloning

Human pEGFP-IDH1wildtype and pEGFP-IDH1R132H constructs were described as previ-

ous (26). IDH1R132C and IDH1G70D mutations were cloned by in-fusion PCR with two 

sets of primers, 5’-CTATCATCATAGGTTGTCATGCTTATGGGGATCAATAC-3’ 

and 5’-CCATAAGCATGACAACCTATGATGATAGGTTTTAC-3’ for IDH1R132C; 

5’-AGAAGCATAATGTTGACGTCAAATGTGCCAC-3’ and 5’-GTGGCACATTT-

GACGTCAACATTATGCTTCT-3’ for IDH1G70D. The whole construct was linearized 

and inserted into a miniTol2 vector (Addgene, plasmid #31829).

Generation of transgenic zebrafish

All experiments with zebra�sh (Tupfel long �n or TL) were conducted according to 

the protocols approved by the Animal Experimentation Committee of the Erasmus 

Medical center and EU guidelines. To generate transgenic zebra�sh lines expressing 

GFP-IDH1wildtype and GFP-IDH1R132H driven by different promoters (Nestin, Gata2 and 

Gfap), we injected various constructs into the cells of fertilized zebra�sh eggs at the 

one-cell stage. Embryos that showed GFP expression at 1 day post fertilization (dpf) 

were collected and raised to adulthood (3 months, F0) and then individually crossed 

with non-transgenic wildtype TL (F1). GFP expression in the F1 �sh indicated that the 

constructs were integrated into the �sh genome. The GFP-positive F1s were separately 

raised to adults and then interbred to generate homozygous F2. Although we did not 

actually test for homozygosity of our transgenic lines, we inferred this by the observa-

tion that all F2 inbred offspring expressed GFP. All F2 progenies were further inbred. 

The experiments were performed mainly on likely homozygous F4 zebra�sh. tp53 

mutant �sh (tp53M214K) were described by Berghmans et al and obtained from ZFIN 

(ZFIN.org) (27).

Histology and Immunohistochemistry

Zebra�sh embryos were �xed overnight in 4% paraformaldehyde (PFA) at 4°C and 

then embedded in paraf�n for further histological analysis. Paraf�n sections (6 μm) 

were stained with hematoxylin and eosin (HE). For immunohistochemistry (IHC), 

paraf�n sections were dewaxed and hydrated followed by boiling in 10 mM sodium 

citrate for eight minutes and 2 times 3 minutes of boiling in a microwave oven. Prior 

to immunostaining, the endogenous peroxidase activity was blocked by 30% hydrogen 

peroxide and 12.5% sodiumazide in PBS for 30 minutes. The slides were washed in 

PBS and PBS+ which contained 0.5% g/ml protifar and 0.15% g/ml glycine and then 

incubated with primary antibody overnight at 4°C. The primary antibodies used were 

anti-GFP (1:2000) monoclonal antibody (Roche, Woerden, the Netherlands), 5hmC (1: 
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200, Active Motif, La Hulpe, Belgium) and anti-human IDH1R132H (1:200) monoclonal 

antibody (Dianova, clone DIA H09, Huissen, the Netherlands), diluted in PBS+. The 

sections were then washed in PBS+ and incubated with BrightVision Poly-HRP-Anti 

IgG (immunologic) for 60 minutes at room temperature (RT). The slides were washed 

in PBS+ and PBS and then treated with 1:50 diluted DAB-substrate (DAKO Liquid 

DAB substrate-chromogen system) for 4-8 minutes, followed by counterstaining with 

haematoxylin and mounted in entellan. Histological images were captured using an 

Olympus BX40 camera.

Real-time PCR

To examine the expression of IDH1 and GFP during envelopment, total RNA was 

extracted by dissolving embryos in 500 μl TRIzol® (Life technologies, Carlsbad, USA) 

and 100 μl chloroform followed by centrifugation at 12.000 g for 15 min at 4˚C. RNA 

in the aqueous phase was precipitated with 250 μl isopropanol and collected at 12 

000 g for 10 minutes at 4˚C. The pellet was washed twice in 250 μl 75% ethanol, 

centrifuged at 12 000 g for 5 minutes at 4˚C, dried and dissolved in 10 μl nuclease 

free water (Ambion, Thermo Scienti�c, Rochester, USA ). For cDNA synthesis, each 

reaction contained 1000 ng RNA, 1 μl hexamers, 1 μl 10 mM dNTP’s and milliQ water 

to 13 μl and was heated to 65˚C for 5 minutes and left on ice for at least 1 minute. 

The RNA was then treated with 4 μl 5x Firststrand buffer, 1 μl 0.1M DTT, 0.5 μl 

RNaseOUT and 0.5 μl DNase. The samples were heated to 37˚C for 40 minutes and 

further heated to 65˚C for 10 minutes. The RNAs were then reverse-transcribed by 

adding 1 μl Superscript III (Invitrogen, Breda, the Netherlands) and 0.5 μl RNase OUT 

followed by incubation at 25˚C for 5 minutes and 42˚C for one hour. 1 μl cDNA was 

used in a 15 μl reaction containing 7.5 μl Syber Select Mastermix (Life technologies), 

1mM primers and MilliQ. The primer sequences are described in Supplementary Table 

1. The reactions were performed in triplicate using a CFX96 Real-Time PCR System 

(Bio-Rad). The threshold cycle (Cq) for each reaction was obtained and the values were 

averaged. The standard deviation (SD) had to be below 0.2. The relative expression 

levels, of different time points in zebra�sh life, were calculated. First the ∆Cq of a 

sample was calculated; ∆Cq= IDH1 Cq mean- β-actin Cq mean. Then one time point 

was set as a reference (=1.00) and the ∆∆Cq was calculated as ∆∆Cq= ∆Cq reference 

- ∆Cq unknown sample. To calculate the relative expression levels the formula 2^ ∆∆Cq 

was used.

Protein extraction and immunoblotting

Zebra�sh embryos were lysed in 500 μl HEPES-buffer containing 1x protease inhibitor 

(cOmplete, Thermo Scienti�c) and 3 µM DTT followed by homogenization by a PRO 

200 homogenizer and incubated on ice for 30 minutes. 50 µg of protein was separated 
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by loading onto a precast SDS gel (Thermo Scienti�c) and electrophoresis at 150 V 

till loading buffer reached the bottom of the gel. Protein was then transferred to a 

nitrocellulose membrane in transfer buffer at 100 V, 380 mA, for 1 hour. The mem-

brane was blocked with blocking buffer containing 1% BSA in PBS for 1 hour at room 

temperature and incubated with primary antibody overnight at 4 °C with agitation. 

Primary antibodies used were anti-Collagen Type IV (1:1000, Abcam, Hilversum, The 

Netherlands) and 5hmC (1: 1000).

Microinjection of wildtype zebrafish embryos with Gfap constructs

20 µl of injection solution containing 350 ng of Gfap constructs, 30 ng/µl Tol2 trans-

posase RNA and 0.1% pheno-red was freshly prepared before injection. 4.2 nl of 

injection solution was injected into the cell of 1-cell stage embryos using a Pneumatic 

PicoPump (PV820, WPI). For each construct, injection was performed on 100 eggs 

in three independent experiments. The fertilization rate was calculated based on 30 

uninjected embryos collected on the same day. The number of GFP+, GFP-, healthy and 

abnormal embryos were counted on 1dpf.

5hmC assay

Total DNA was extracted using whole �sh embryos. A nitrocellulose membrane was 

pre-soaked in 20X SSC for 1 hour. 250 ng DNA was diluted in 150�l H2O and 150�l 

20X SSC. The membrane and two layers of thick �lter papers were placed on a manifold 

(manifold II slot-blot manifold, Cole-Parmer, Wertheim, Germany) and equilibrated 

with 10X SSC. DNA samples were then loaded and �xed on the membrane using a 

vacuum pump for 5 minutes. The membrane was air-dried and processed as described 

above in the immunoblotting section. Blots were stained using the 5hmC antibody 

(1:1000) and analyzed using ECL.

IDH1 mutant inhibitor test

Five transgenic zebra�sh embryos from each line were screened for GFP expression at 

1 or 2 dpf and removed from the chorion and raised in 2 ml tap water for 48 hours with 

either 10µM AGI-5198 (Xcess Biosciences, Inc.) in 0.1% DMSO or 0.1% DMSO. Ze-

bra�sh embryos were collected at 3 dpf in 25 µl of HBSS buffer for 2HG measurement.

Quantification of D/L2HG in zebrafish

To quantify the level of D- and L2HG in the zebra�sh, �ve embryos were collected at 

1, 2, 3, 5 and 6 dpf in HBSS buffer (5µl per embryo). The embryos were homogenized 

with a PRO 200 homogenizer and lysed with sonication before LC-MS/MS. The D and 

L forms of 2HG were separately measured and quanti�ed as described previously (28).
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Statistics

Differences in D- and L- 2HG levels between experimental conditions were evaluated 

using the students t-test. A Fisher’s exact test was used to compare differences between 

frequencies.

RESULTS

Generation and characterization of transgenic zebrafish lines

We �rstly generated transgenic lines for two constructs, eGFP-IDH1wildtype and eGFP-

IDH1R132H, in which the transgene was expressed under control of a Nestin promoter. 

These constructs are referred to as NesIDH1wt and NesR132H. At least two independent 

lines per construct were generated to control for integration-site dependent effects.

Transgene expression was detected in the brain and spinal cord on 1, 3 and 6 days post 

fertilization (dpf) by �uorescent imaging (Fig. 1A and Fig. S1A) and by immunohisto-

chemistry (Fig. 1B) using anti-GFP antibodies. Expression of NesR132H was con�rmed 

using an IDH1R132H-mutant speci�c antibody (Fig. S2). As expected, this antibody did 

not show staining in the NesIDH1wt-�sh. Expression of transgenes on 1, 2, 3 and 6 dpf 

was also detected on the RNA level by RT-QPCR (Fig. 1C). We then measured D2HG 

levels to monitor the activity of the neomorphic enzyme. Consistent with RNA and 

protein expression, the D2HG level in NesR132H mutant transgenic �sh was elevated 

compared to controls (non-transgenic and NesIDH1wt) on 1-5 dpf (Fig. 1D). The increase 

in D2HG was virtually identical when using macro-dissected embryos (head region) 

compared to whole �sh (Fig. S3). L2HG levels in all the transgenic lines were similar to 

the non-transgenic controls (Fig. 1E); indicating expression of IDH1R132H only affects 

D2HG levels. D2HG levels returned to normal by 21 dpf. These experiments demon-

strate CNS-speci�c expression of IDH1wt or IDH1R132H in our transgenic zebra�sh lines 

during development. This temporal expression pattern in the CNS is consistent with 

the Nestin promoter activity (29-31).

It has been reported that accumulation of D2HG results in DNA hypermethylation by 

inhibition of TET enzymes (32). In our transgenic �sh, DNA methylation as determined 

by 5hmC antibody staining was however not affected (Fig. S4). We next screened for 

collagen maturation defects, as these were observed in an IDH1R132H-KI mouse model 

(21). However, western blot analysis failed to detect the presence of immature isoforms 

of collagen in our transgenic �sh lines (Fig. S5). In summary, despite expression of 

the transgene (and the elevated levels of D2HG in lines expressing NesR132H), all of the 
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zebra�sh lines remained healthy without presenting any identi�able developmental 

abnormalities (Fig. S6).

Given the short temporal expression of IDH1 constructs driven by the Nestin pro-

moter, we cloned constructs under the control of a brain speci�c Gata2 promoter. 

This promoter was previously used for constructing a transgenic zebra�sh model for 

neurodegeneration (33). Three transgenic lines were generated, pGata2-GFP-IDH1wt, 

pGata2-GFP-IDH1R132H and pGata2-GFP. These constructs are referred to as GataIDH1wt, 

GataR132H and GataGFP. Unfortunately, we failed to observe any transgene expression in 

the developing (or adult) CNS in any of the lines generated. We did however observe 
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Figure 1. Characterization of NesIDH1 zebrafish lines. Expression of the transgene was detected in the central 
nervous system (CNS) of zebrafish embryos using fluorescent imaging (A: non-transgenic wildtype zebrafish 
showing background auto-fluorescence staining, mainly in the yolk sac; A’: NesIDH1 show expression of the 
transgene in the CNS of 3dpf embryos). Expression was confirmed by immunochemistry staining using an 
anti-GFP antibody (B) and Q-PCR (C). D2HG only accumulated in NesR132H zebrafish (D, non-transgenic vs 
NesIDH1wt, p= 0.754, non-transgenic vs NesR132H, p= 0.003, student’s t-test). L2HG levels in the transgenic lines 
showed no such increase (E). For Q-PCR experiments, we used a pool of five fish per time-point; D2HG and 
L2HG measurements were averages of two replicates using 5 fish per replicate. Scale bar: 200 µm.
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expression in the notochord from 1 for up to 5 dpf (Fig. S7), but, despite expression of a 

D2HG-producing IDH1 mutant, all �sh were viable, developed normally and produced 

offspring. Similar to the NesIDH1wt and NesR132H �sh, no gross abnormalities or (pre-) 

neoplastic lesions were observed. As we failed to observe expression in the CNS we did 

not further investigate these lines.

Because of the temporal limitations of the Nestin promoter and the lack of expression 

in the CNS using the Gata2 promoter, we generated six additional lines, one for eGFP-

IDH1wildtype, eGFP-IDH1R132H, eGFP-IDH1G70D and eGFP, and two for eGFP-IDH1R132C, 

in which the transgene was expressed under control of a Gfap promoter. Constructs 

used for these lines are referred to as GfapIDH1wt, GfapR132H, GfapR132C, GfapG70D and 

GfapGFP. The expression vector (gfap:GFP) has been demonstrated to have glial-

speci�c expression in the zebra�sh CNS, detectable during the embryonic stage (34). 

The IDH1G70D mutation is an enzymatic null mutation that was included to serve as 

a non-D2HG-producing control (15, 35). The IDH1R132C mutation was generated to 

study potential differences between IDH1R132H and IDH1R132C, and is a mutant with 

reportedly higher neomorphic enzymatic activity (36). Expression of the transgenes 

was con�rmed using �uorescent imaging on 1, 3 and 5 dpf (Fig. 2A and S1B). GFP was 

observed in the brain and spinal cord in all the Gfap transgenic zebra�sh lines. CNS-

speci�c expression of the transgene was further con�rmed by immunohistochemistry 

using anti-GFP antibodies (Fig. 2B). Expression of the transgene on the RNA level was 

con�rmed by RT-QPCR till at least 20 dpf (Fig. 2C). There were no obvious differences 

in results from these assays between IDH1R132H and IDH1R132C transgenic zebra�sh. 

The D2HG levels were markedly elevated in both GfapR132C zebra�sh lines ( line 84 

and 85) on 3 dpf, which are about 8 and 18 times higher compared to the GfapGFP and 

GfapIDH1wt lines (line 73 and 92, Fig. 2D). D2HG levels in GfapG70D zebra�sh remained 

similar as in GfapGFP and GfapIDH1wt lines. L2HG levels of all the IDH1 transgenic lines 

were similar to the GfapGFP control, con�rming that expression of transgene only af-

fects the D2HG level (Fig. 2E).When crossing GfapR132C line 85, an average of 21.1% of 

generated embryos showed abnormal tail development on 1dpf, which was higher than 

in the GfapGFP (3%) and GfapIDH1wt (0%) control lines (Fig. 2F and 2G). The tail defects 

may be explained by the fact that the �rst detectable expression of Gfap is at 10 h post 

fertilization in the developing tail bud (34). However, no clear (pre-) cancerous lesion 

was observed in any of the zebra�sh lines studies.

It is possible that IDH1R132H/R132C induced a pathologic phenotype due to the site of 

integration of our transgene. To correct for potential integration site artifacts, we 

directly injected fertilized zebra�sh eggs at the one-cell stage with various constructs 

and monitored zebra�sh development. We speci�cally monitored tail development 
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Figure 2. Characterization of Gfap zebrafish lines. Expression of transgene was detected using fluorescent 
imaging (A), immunohistochemistry with an anti-GFP antibody (B) and QPCR (C). Elevated levels of D2HG 
were only detected in GfapR132C lines (D). L2HG levels in the transgenic fish embryos were not affected (E). 
About 21% GfapR132C embryos showed defects in tail development on 1dpf (F and G). Arrow heads: the site of 
abnormal tail development in the GfapR132C embryos. For Q-PCR experiments, we used a pool of five (3dpf) or 
three (20 dpf) fish per time-point; D2HG and L2HG measurements were averages of two replicates using five 
(3 and 5 dpf) or three (20 dpf) fish per replicate. Scale bar: 500 µm.
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in our transgenic �sh. In three independent experiments, we injected fertilized eggs 

with GfapGFP, GfapIDH1wt or GfapR132C constructs. While most embryos injected with 

GfapGFP remained healthy (n = 105/129, Fig. S8A and S8D), most embryos injected 

with the GfapR132C construct were not (n = 75/85, P<0.001, Fisher’s exact test). In 

line with our transgenic lines, many showed an abnormal development of the tail on 

1dpf. However, zebra�sh embryos injected with GfapIDH1wt constructs also sometimes 

had abnormal tail development, though the frequency was signi�cantly lower than that 

of GfapR132C (n = 13/24, P<0.001).

tp53 deficient Transgenic zebrafish crossed with IDH1 mutant fish

TP53 mutations often co-occur in IDH1-mutated astrocytomas. To determine whether 

GfapR132C affects tumor formation, we crossed the homozygous tp53M214K mutant trans-

genic zebra�sh with our transgenic zebra�sh lines. It was previously reported that 

homozygous tp53 mutant zebra�sh developed tumors (Schwannomas) at ~8 months 

post fertilization with an incidence of 28% (27). Although we �nd that heterozygous 

tp53 mutant �sh developed tumors (Table 1 and Fig. S9, incidence=15%, n=2/13) 

with an average age of onset ~1 year post fertilization, this incidence was not in-

creased when the �sh were crossed into a pGfap:GFP-IDH1R132H (or wt) background, 

with incidence between 6 to 14.3% regardless of the IDH1 variants or GFP controls 

(P>0.3 for all comparisons, Fisher’s exact test). The non-CNS tumors we observe in 

our transgenic lines are most likely Schwannomas, as previously described (27). They 

are mainly in the abdominal cavity, an area where we do not see expression of our 

transgene. Our results therefore demonstrate that expression of mutant IDH1 does not 

promote tumor formation in tp53 mutant zebra�sh.

IDH1 mutated transgenic zebrafish as an in vivo model for drug screening

AGI-5198 is a speci�c inhibitor for the IDH1 mutant enzymatic activity (19). To 

determine whether this inhibitor also affects D2HG production in vivo, we applied it 

Table 1. Tumorigenesis incidence of Gfap fish after crossing with Tp53 mutant

# of 
generated 
fish

# of fish with 
tumor (over 
1 year post 
fertilization)

Incidence 
of non-CNS-
tumors (%)

Incidence of 
CNS-tumors 
(%)

GfapGFP 35 3 8.6 0

GfapR132C 30 3 10 0

GfapG70D 28 4 14.3 0

Gfapwt 15 1 6 0

Heterozygous Tp53 mutant 13 2 15 0
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to our transgenic zebra�sh lines harboring different IDH1 variants under control of 

the Nestin and Gfap promoters at 1dpf for 48 hours. Dose-response analysis indicates 

maximal inhibition at 10µM AGI-5198 on the NesIDH1 transgenic zebra�sh (Fig. S10). 

The inhibitor did not show any overt toxicity, even after prolonged (2 days) treatment. 

The accumulated D2HG in our NesR132H transgenic zebra�sh was decreased by 10 µM 

AGI-5198 to 41% of the levels prior to treatment whereas D2HG levels in the non-

transgenic and NesIDH1wt transgenic zebra�sh were not affected (Fig. 3A). The D2HG 

levels were also markedly reduced in the GfapR132C zebra�sh line from 34.86 reduced 

to 8.77 pmol (25% of the D2HG level in the untreated �sh (Fig. 3B)). Levels of D2HG 

in control transgenic lines remained low and were not affected by the inhibitor. The 

L2HG level in all of the treated transgenic lines was not altered (Fig. 3C and D). These 

data demonstrate that our transgenic zebra�sh lines can be used to screen the ef�cacy 

and toxicity of drugs that inhibit IDH1 mutant enzyme activity.
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Figure 3. Treatment of transgenic zebrafish with 10µM IDH1 mutant inhibitor, AGI-5198, resulted in a 
reduction in the D2HG level in the IDH1 mutant zebrafish. D2HG level in NesR132H transgenic zebrafish was 
reduced to 41% of untreated (A). D2HG level in GfapR132H transgenic zebrafish was reduced to 25% of untreated 
(B) The L2HG level was not affected by AGI-5198 (C and D). D2HG and L2HG measurements were averages 
of two replicates using five fish per replicate.
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DISCUSSION

Studying IDH1 mutations in gliomas has been hampered by the dif�culty in generating 

appropriate model systems. For example, IDH-mutated gliomas are notoriously dif�cult 

to propagate in vitro (37) and mouse models for IDH1 mutations often have a lethal 

phenotype when IDH1R132H is expressed at early stages of development (21, 23, 25). 

Mice can survive when the mutant protein is expressed at later stages, but often with 

severe phenotypes (e.g. hydrocephalus). A Drosophila model with UAS-Idh-R195H 

resulted in defects in wing expansion (38). Here we report on transgenic zebra�sh 

model systems for IDH1 mutations, and show that expression of IDH1 mutations and 

subsequent accumulation of D2HG does not overtly affect zebra�sh development in 

the majority of offspring. However, tail development defects were observed in a subset 

of offspring in one line and also following direct injection of mutant constructs in 

wildtype zebra�sh embryos (Fig. S8). Expression of mutant, but not wildtype IDH1 

may therefore affect the cells required for normal tail development.

In contrast to the Nestin or GFAP-R132H KI mouse models, we did not observe any 

overt phenotype in any of the NesR132H transgenic zebra�sh and the majority of Gfap 

transgenic �sh. In mice, the brain hemorrhage phenotype is caused by collagen matura-

tion defects (caused by inhibition of prolyl hydroxylases by D2HG) (21). Alternatively, 

brain hemorrhages may be secondary to D2HG mediated coagulation defects (39). In 

our transgenic lines, we failed to detect signs of collagen maturation defects or brain 

hemorrhage, which may provide an explanation why our �sh are able to survive into 

adulthood. The absence of collagen maturation defects in our �sh may be related to the 

level of D2HG accumulation in our model system, the expression level of IDH1R132H in 

our transgenic �sh, and/or to the more limited temporal expression of our constructs. 

D2HG accumulation may also be limited as it is likely able to diffuse out of the �sh into 

the water of the tank. This may explain that only a modest increase in the D2HG level 

was detected in the IDH1-mutated �sh. We failed to detect changes in 5hmc levels in 

the IDH1-mutated embryos which may also be caused by insuf�cient accumulation of 

local D2HG within the �sh. In addition, any potential effects on �sh ‘�tness’ is selected 

against in the process of generating transgenic lines: only healthy �sh (despite elevated 

D2HG levels) are used to generate stable lines.

We were unable to detect CNS-speci�c tumors in our transgenic zebra�sh lines. This is 

in line with data from mouse models in which brain tumors were thus far not detected. 

This supports the notion that IDH1 mutation alone may be insuf�cient to promote 

tumor formation and other genetic alterations are required (40). In most astrocytomas, 

TP53 and IDH mutations often co-occur (41). However, the combination of IDH1 
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and tp53 mutations did not induce gliomas in our zebra�sh model. Similarly, IDH1 

mutations also did not increase tumor incidence in Tp53 mutant mouse model, despite 

the observation that IDH1 mutations induce pre-cancerous lesions such as prolifera-

tive subventricular nodules in one mouse model, but interestingly not in an almost 

identical other model (23, 25). Similarly, mutations in IDH1/2 in combination with 

Tp53 de�ciency were insuf�cient to induce gliomagenesis in RCAS/tva mouse models 

(40). Since mutations in IDH and TP53 are the most common genetic alterations in 

astrocytomas, it remains unclear which additional mutations are required to induce 

glioma formation in our zebra�sh model. Candidate genes should include oncogenic 

drivers ATRX and/or PDGFRA as they are present at signi�cant frequency in lower 

grade gliomas. Of note, zebra�sh has been appreciated as a valid model to study tumori-

genesis, for example, tp53-mutant �sh develop schwannomas and gliomas can also be 

generated in zebra�sh by activating akt1 alone (42). Our data also show that D2HG can 

be present at high levels throughout the development of zebra�sh without any overt 

signs of pathology (although a minority of our transgenic �sh did show defects in tail 

development). These data are in line with the observation that some D2HG aciduria 

patients, which have high levels of D2HG due to mutations in IDH2 or D2HGDH, 

do not have any overt phenotype. Moreover, D2HG aciduria patients do not have an 

increased incidence of brain tumors (43).

In conclusion, we developed various transgenic zebra�sh models with CNS-speci�c 

expression of IDH1 mutation. We identi�ed tail defects in a subset of IDH1-mutant 

�sh, but we thus-far failed to identify tumors. Nevertheless, our transgenic zebra�sh 

are a suitable model to functionally study the IDH1 mutation in vivo or to use as a drug 

screening model.
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Supplementary Figure 1. Fluorescent imaging showed expression of transgene in the central nervous sys-
tem of Nestin (A) and Gfap (B) transgenic zebrafish lines on 1, 3 and 5 dpf. White arrow head: CNS-specific 
GFP. Yellow arrow head: auto fluorescence in the yolk sac.
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Supplementary Figure 2. Immunohistochemistry using anti-IDH1R132H antibody demonstrated expres-
sion of IDH1R132H specific expression in Nestin zebrafish but not in IDH1wt transgenic fish.
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Supplementary Figure 3. D2HG measurement in NesIDH1wt and NesR132H transgenic fish. No differences in 
D2HG levels between macro-dissected and whole embryos were observed.
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Supplementary Figure 4. 5hmC levels was not affected by high levels of D2HG in transgenic NesR132H mu-
tant zebrafish. A. 5hmC levels in NesIDH1wt, NesR132H and non-transgenic zebrafish embryos were measured us-
ing slotblot stained with an 5hmC antibody (quantification of bands on the right panel). Similar results were 
obtained in three independent experiments one of which is shown below. B. Representative images showing 
5-hmC immunostaining in NesIDH1wt, NesR132H transgenic and non-transgenic zebrafish embryo slices at 3dpf. 
NT: non-transgenic zebrafish.
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Supplementary Figure 5. Collagen maturation was not affected in NesR132H mutant zebrafish. Top half of the 
blot was stained for type IV Collagen, bottom half was stained for Tubulin (as loading control). Similar data 
were obtained in three independent experiments. NT: non-transgenic zebrafish. H: head of zebrafish embryos. 
W: whole embryo.
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Supplementary Figure 6. NesR132H transgenic zebrafish with CNS-accumulation of D2HG showed no gross 
histological abnormalities on 3dpf on H&E staining.
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Supplementary Figure 7. Gata2GFP transgenic zebrafi sh shows expression in the notochord of zebrafi sh. Yel-
low arrow: In Gata2IDHwt transgenic fi sh the transgene is expressed in non-CNS regions (yellow arrow) whereas 
GfapIDH1wt transgenic fi sh show CNS-specifi c expression of transgene (white arrow). The blue arrow shows an 
absence of GFP signal in non-transgenic fi sh.
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Supplementary Figure 8 Direct injection of fertilized zebrafi sh embryos with Gfap constructs showed mu-
tant-specifi c tail defects. Fluorescent imaging showed CNS-specifi c expression of injected construct GfapGFP 
(A), GfapIDH1wt (B) and GfapR132C(C) and the corresponding bright-fi eld images (A’-C’). D: the percentage of GFP-
positive embryos with tail defects per construct. The ratio of injected embryos with tail defect were calculated 
based on results of three independent experiments (~100 eggs/construct/experiment). n.s: non-signifi cant. 
Scale bar: 500µm.
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Supplementary Figure 9. An example of a schwannoma in tp53 deficient transgenic zebrafish crossed with 
IDH1 transgenic fish. Euthanized 1-year old fish with a distended abdominal cavity (A). Fish were fixed in 
paraffin blocks (B) and sectioned slides were stained with hematoxylin/eosin for histological examination (C). 
D and E: enlarged images of sections in C, histological feature of tumors were consistent with the schwanno-
mas as previously demonstrated (36).
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Supplementary Figure 10. Dose-response analysis of AGI-5198 on Nestin transgenic zebrafish. Maximal 
inhibition is reached at 10µM.

Supplementary Table 1. Primers used for the examination of IDH1 expression levels in zebrafish by QPCR.

Gene Exon Primer (5’-3’)

IDH1 4 FW- CGACCAAGTCACCAAAGATGC

4 RV- CCTCAACCCTCTTCTCATCAGG

Β-actin 2 FW- CGTGCTGTCTTCCCATCCA

3 RV-TCACCAACGTAGCTGTCTTTCTG
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ABSTRACT

Background

EGFR is frequently mutated in various types of cancer. Although all oncogenic muta-

tions are considered activating, different tumor types have different mutation spectra. 

It is possible that functional differences underlie this tumor-type speci�c mutation 

spectrum.

Methods

We have determined whether speci�c mutations in EGFR (EGFR, EGFRvIII and EG-

FR-L858R) have differences in binding partners, differences in downstream pathway 

activation (gene expression and phosphoproteins), and have functional consequences 

on cellular growth and migration.

Results

Using biotin pulldown and subsequent mass spectrometry we were able to detect 

mutation speci�c binding partners for EGFR. Differential binding was con�rmed us-

ing a proximity ligation assay and/or Western Blot for the dedicator of cytokinesis 

4 (DOCK4), UDP-glucose glycoprotein glucosyltransferase 1 (UGGT1), MYC bind-

ing protein 2 (MYCBP2) and Smoothelin (SMTN). We also demonstrate that each 

mutation induces the expression of a speci�c set of genes, and that each mutation 

is associated with speci�c phosphorylation patterns. Finally, we demonstrate using 

stably expressing cell lines that EGFRvIII and EGFL858R display reduced growth and 

migration compared to EGFR wildtype expressing cells.

Conclusion

Our results indicate that there are distinct functional differences between different 

EGFR mutations. The functional differences between different mutations argue for 

the development of mutation speci�c targeted therapies.
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INTRODUCTION

The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is 

a member of the ERBB protein family and is localised on the cell membrane. The 

receptor is activated by members of the pidermal growth factor (EGF) family (a.o. 

EGF, amphiregulin, TGF-a, HB-EGF and epiregulin) and binding of one such ligand 

results in receptor dimerisation which induces receptor phosphorylation, recruitment 

of adaptor proteins and subsequent activation of signal transduction cascades [1,2].

Somatic mutations in the EGFR gene are found in several types of cancer and the 

mutation spectrum includes gene ampli�cations, gene-fusions, deletions in the extra-

cellular domain (e.g. EGFRvIII; a deletion of exons 2–7), deletions in the intracellular 

domain (e.g. EGFRvV; a deletion of exons 25–28) and mutations affecting the tyrosine 

kinase domain (mainly exon 19 and codon L858) [3–5]. These mutations result in a 

constitutively activated isoform of the protein and contribute to oncogenic transforma-

tion [5–8].

Although EGFR mutations are activating, there are marked differences in the spectrum 

of mutations between tumour types. For example, the c.2573T>G missense mutation, 

resulting in the L858R substitution, is found in _10–15% of all pulmonary adenocar-

cinomas [4]. This mutation is the most frequent of all mutations in EGFR but has thus 

far never been identi�ed in glioblastomas (GBMs) [3]. The most common mutations 

in GBMs affect the extracellular domain of EGFR, including EGFRvIII (~30% of all 

GBMs) and the A289V and V598V missense mutations [3]. These extracellular domain 

mutations are not found in pulmonary adenocarcinomas [4]. One of the explanations 

for these tumour-type speci�c mutations is that each mutation invokes a unique signal 

transduction cascade. Indeed, EGFRvIII and EGFRwt have differential activation of 

the JNK, STAT and MAPK signalling pathways and induce the expression of a unique 

set of genes [9–13]. Because different tumour types may be dependent on the unique 

pathways that are activated by different EGFR mutations, studying these functional 

differences between mutations may identify novel, tumour type speci�c treatment 

targets. Here, we have further evaluated differential activation of signal transduction 

pathways by EGFR-wt, EGFR-L858R and EGFRvIII.

MATERIALS AND METHOD

EGFRvIII and EGFR-L858R cDNAs were obtained from Addgene (Cambridge, MA), 

EGFR wildtype was a gift from Ton van Agthoven and cloned into pcDNA3.1/CT-
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GFP-TOPO (Invitrogen, Bleiswijk, the Netherlands). A biotin tag and eGFP were 

inserted C-terminal to the transmembrane domain of EGFR to retain the integrity 

of the C-terminal (intracellular) domain of EGFR. To demonstrate functionality, we 

transfected EGFRbio-GFP into ZR-75-1 cells. Normally, ZR-75-1 cells do not proliferate 

in the presence of tamoxifen [43]. However, ZR-75-1 cells expressing EGFR-bioGFP, 

cultured in the presence of tamoxifen, responded to EGF stimulation by an increase 

in cell proliferation, demonstrating the construct remained functional (not shown). 

Stably transfected HOG (human oligodendroglioma cells [44]) cell lines were created 

by transfection, geneticin selection and FACS sorting. Stable cell lines were derived 

from bulk culture and not form a single sorted cell followed by clonal propagation.

Migration and proliferation assays were performed using an Incucyte (Essen Biosci-

ence, Ann Arbor, MI). For proliferation experiments, 50,000 cells/well were plated in 

a 24-well Greiner plate (Greiner Bio-One, Alphen a/d Rijn, the Netherlands). Growth 

curves were constructed using the Con�uence v1.5 metric of the Incucyte software. For 

migration experiments, cells were grown to con�uence in a 24-well Essen ImageLock-

plate after which a cell-free zone (scratch) was created using a WoundMaker. Wells 

were then cultured in serum-free media.

Constructs containing EGFRwt-BG, EGFRvIII-BG and EGFRL858R-BG were trans-

fected into HEK cell lines using Polyethylenimine ‘Max’ (Polysciences, Eppelheim, 

Germany). The EGFRwt-BG, EGFRvIII-BG and EGFRL858R-BG proteins were then 

isolated using Dynabeads (Life Technologies, Carlsbad, CA, United States of America 

(USA)) as described previously [39]. Puri�ed proteins were washed and loaded on a 

SDS page gel. Nano�ow LC-MS/MS analysis was performed essentially as described 

by van den Berg et al. [45]. Candidate binding proteins that were present in a GFP 

control pulldown or identi�ed in >10% of CRAPome experiments were omitted from 

the analysis [14]. We focused on candidate binding proteins that were identi�ed with 

MASCOT scores >300.

Western blots were performed as described [39]. Antibodies used were DOCK4 

(1:100), UGGT1 (1:100), DDX21 (1:500) all from Sigma–Aldrich (Zwijndrecht, the 

Netherlands), EGFR (1:1000, Cell Signaling, Boston, MA) and GFP (1:5000, Abcam, 

Cambridge, United Kingdom (UK)).

Cells (HOG, U87MG, HEK) were cultured on glass slides for immunocytochemistry. 

Glioma samples were obtained from the Erasmus MC glioma tissue bank. Use of 

patient material for current study was approved by the Institutional Review Board. 

Antibodies used for immunocytochemistry and/or proximity ligation assays were 
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EGFR (1:200, DAKO, Heverlee, Belgium) and DOCK4 (1:100), MYCBP2 (1:200) and 

SMTN1 (1:100) all from Abcam. Proximity ligation assays were performed using a 

Duolink (Sigma–Aldrich) kit according to the manufacturer’s instructions.

HEK cells were transiently transfected with EGFRbioGFP, EGFRL858R-bioGFP and 

EGFRvIII-bioGFP or BIO-eGFP constructs. Twenty hours after transfection, cells 

were FACS sorted to select for eGFP expressing cells. Cells were then snap frozen in 

liquid nitrogen and stored at _80 _C. RNA extraction was performed using TriZol 

(Invitrogen) and checked for RNA quality on a Bioanalyzer (Agilent, Amstelveen, the 

Netherlands). Gene expression was performed using HU133 plus2 arrays (Affymetrix, 

High Wycombe, UK) run by AROS Applied Biotechnology (Aarhus, Denmark). All 

experiments were performed in triplicate with each replicate experiment performed 

on separate days.

For reversed phase protein array (RPPA) analysis, stably transfected HOG cells were 

plated in six well plates and incubated in serum supplemented medium, or serum 

depleted medium (24 h depletion) ± 200 ng EGF for 5 min. RPPA arrays were per-

formed by the MD Anderson RPPA core facility. Luciferase activity was measured by 

Dual–Luciferase Reporter Assay System (Promega). Pathway analysis was performed 

using Ingenuity (Redwood City, CA) and David [46].

RESULTS

We �rst generated constructs of wildtype EGFR and of two common mutations, EGFR-

vIII and L858R, and inserted a biotinylation tag and eGFP in-frame and Cterminal to 

the transmembrane domain. Constructs are referred to as EGFRwt-BG, EGFRvIII-BG 

and EGFRL858R-BG respectively. Mass spectrometry following pulldown of biotinyl-

ated constructs identi�ed over 3000 candidate binding partners for at least one of these 

constructs. When �ltering for duplicate hits, and removal of proteins identi�ed by a 

bio-eGFP control pulldown or present in >10% of crapome pulldown experiments 

[14], our list of candidate EGFR binding proteins included 87 unique proteins (Supple-

mentary Table 1). Almost half (37/87) of these binding partners are known interactors 

of EGFR and include CBL, PIK3CA, PIK3R3, SHC1 and SOS1 [15–17].

Ingenuity pathway analysis indicated that the candidate EGFR associated proteins are 

involved in EGF signaling and Clathrin mediated endocytosis signalling. Candidate 

EGFR interacting proteins are enriched for proteins that are somatically mutated in 

GBMs. For example, 7/87 (8.0%) genes are mutated at a population frequency >1.5% 
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(i.e. mutations found in at least 5/290 tumours) in the TCGA, a 3–4-fold enrichment 

compared to all genes mutated at this frequency in GBMs (485/_20.000 genes, 2.4%, 

P = 0.007, Fishers’ exact test).

Of the 87 candidate binding proteins, 22 showed selective association to one of the 

EGFR constructs (Table 1). Selective association was de�ned as a relative difference 

in mascot scores >3, and an absolute difference in mascot scores >500 between any 

of the three constructs. The strongest candidate proteins included DOCK4 (dedicator 

of cytokinesis 4) UGGT1 (UDPglucose glycoprotein glucosyltransferase 1), MYCBP2 

(MYC binding protein 2, E3 ubiquitin protein ligase) and SMTN (Smoothelin).

Western blots on independent biotin pulldowns con�rmed that DOCK4 binds prefer-

entially to EGFRvIII-BG and EGFRwt-BG but not to EGFRL858R-BG (Fig. 1b, West-

ern blot experiments in two independent experiments). The association was further 

con�rmed using a proximity ligation assay (PLA, Fig. 1c). OCK4 also associates with 

Table 1. Proteins showing selective binding to one or more specific EGFR mutations

symbol EGFR wt EGFR V111 EGFR-p.L858R

AP1B1 961

CRKL 561 740 229

DNM2 462 798 211

DOCK4 2725 2136 536

EXOC7 533 213

IFI16 772 1079

IPO5 1403 411 217

LAD1 106 669 1056

LMO7 340 1362

MYCBP2 1606

MYO1E 156 503

NGLY1 353 1310 887

PIK3CA 147 902 86

PIK3CB 474 828 72

RTCB 558 341

SEL1L 604 174

SMTN 546

SPECC1L 69 909

SVIL 160 741

TNPO2 410 515

UBE3C 157 828 280

UGGT1 1573
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EGFR also under native conditions as demonstrated by a co-immunoprecipitation us-

ing anti-EGFR antibodies in non-transfected HEK cells (Fig. 1d). Furthermore, PLA 

con�rmed that DOCK4 and EGFR are also colocalised in EGFR ampli�ed GBMs (Fig. 

Figure 1. EGFRwt-BG, EGFRvIII-BG or EGFRL858R-BG associate with specific proteins. A) mass spec-
trometry results for DOCK4 and UGGT1 showing differential binding to EGFR mutations. B) Confirmation 
of the mass spectrometry results by Western Blot on an independent pulldown. C) A proximity ligation assay 
confirms that DOCK4 colocalizes with EGFRwt-BG and EGFRvIII-BG but not with EGFRL858R-BG or Bio-
GFP control (not shown). All images taken at 63x magnification. D) Native EGFR also associates with DOCK4 
as determined by immunoprecipitation of EGFR. E) A proximity ligation assay shows that DOCK4 and EGFR 
also colocalize in tumors.
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1e). DOCK4 remains associated with EGFR-wt in cells that were serum starved over-

night followed by EGF stimulation (Supplementary Fig. 1). These data demonstrate 

that DOCK4 associates with EGFRwt-BG and EGFRvIII-BG and not (or to a lesser 

extent) with EGFRL858R-BG.

Because DOCK4 has been implicated in wnt pathway activation [18] we screened for 

differential ctivation of this pathway activation by the different EGFR constructs. 

However, both under basal and under wnt activated conditions, no differences in wnt 

pathway activation were identi�ed (n = 3 independent experiments, data not shown).

Mass spectrometry also highlighted that UGGT1 and MYCBP2 preferentially associate 

with EGFRvIIIBG and that SMTN preferentially associates with EGFRL858R-BG. 

PLA assays con�rmed the association for all three proteins (Fig. 2), Western blot (WB) 

further con�rmed the association of UGGT1 with EGFRvIII-BG (Fig. 1b). It should be 

noted that some (minor) association of UGGT1, MYCBP1 and SMTN to other EGFR 

constructs were found by PLA and/or WB.

We hypothesised that the selective association of different EGFR mutations ultimately 

would result in the induction of a unique set of genes. We have therefore performed 

gene expression pro�ling of cells expressing EGFRwt-BG, EGFRvIII-BG, EGFRL858R-

BG or BIOeGFP constructs (n = 3 per construct). Statistical analysis of microarrays 

(SAM) identi�ed 74, 109 and 187 probesets that were differentially expressed in 

EGFRwt- BG, EGFRvIII-BG and EGFRL858R-BG expressing cell lines compared to 

BIO-eGFP control (with differential expression >2 and at a false discovery rate (fdr) 

<0.05, Supplementary Table 2). These probesets correspond to 61, 89 and 156 genes 

respectively. Many of these genes are found in all three comparisons and are involved 

in the transcription of DNA and are signi�cantly enriched for the gene-ontology (GO) 

terms ‘sequence-speci�c DNA binding’, ‘transcription factor activity’, ‘transcription 

regulator activity’, ‘DNA binding’ and ‘protein dimerization activity’ (all P < 0.001). 

Top networks identi�ed by Ingenuity pathway analysis include ‘Cellular compromise, 

cellular function and maintenance, gene expression’, ‘developmental disorder, heredi-

tary disorder, neurological disease’ and ‘neurological disease, cell-mediated immune 

response, cellular development’.

To determine whether speci�c mutations have speci�c gene-expression signatures, 

we performed SAM analysis comparing gene expression between the different EGFR 

mutations. A total of 17, 12 and 35 probesets were identi�ed that were differen-

tially expressed between EGFRwt-BG versus EGFRvIII-BG, EGFRwt-BG versus EG-

FRL858R-BG and EGFRvIII-BG versus EGFRL858RBG respectively (with differential 
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Figure 2. EGFRwt-BG, EGFR-
vIII-BG or EGFRL858R-BG as-
sociate with specific proteins. A 
proximity ligation assay shows 
that UGGT1 colocalizes with EG-
FRwt-BG and EGFRvIII-BG but 
not with EGFRL858R-BG or Bio-
GFP control (see also figure 1B). 
Similarly, MYCBP2 colocalizes 
predominantly with EGFRvIII-
BG wheras SMTN predominantly 
colocalizes with EGFRL858R-BG. 
All images taken at 63x magnifi-
cation.
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Table 2. Probesets that are differentially expressed between EGFRwt-BG v. EGFRvIII-BG, EGFRwt-BG v. EG-
FRL858R-BG, and EGFRvIII-BG v. EGFRL858R-BG as identified by SAM analysis

Gene_Symbol Probeset_ID eGFP EGFRwt EGFRvIII
EGFR-p.
L858R

wt v 
vIII

wt v 
L858R

vIII v 
L858R

SOCS3 227697_at 4.5 4.9 9.1 5.6 X X

RAP1A 1555339_at 13.4 4.9 7.0 4.7 X X

C10orf10 209183_s_at 6.6 6.8 8.9 6.8 X X

Hs.527973 206359_at 4.3 4.6 6.6 4.9 X X

RAP1A 1555340_x_at 14.3 5.5 7.3 5.1 X X

XR_132893 1565830_at 6.0 4.6 6.0 5.0 X

SOCS2 203372_s_at 6.8 6.9 7.9 7.4 X

WDR78 1554140_at 6.5 5.1 6.5 5.7 X

DTX3L 225415_at 6.6 6.5 7.4 6.6 X

BC042589 235456_at 7.8 6.4 7.4 6.9 X

KIAA1267 224489_at 6.8 6.0 6.9 6.4 X

RAB30 229072_at 6.1 4.9 6.0 5.1 X

AK022645 232257_s_at 5.2 4.1 5.2 4.5 X

HSPA6 213418_at 4.8 8.2 6.7 9.3 X X

EGR1 201693_s_at 6.0 8.9 7.7 10.9 X X

EGR1 201694_s_at 8.2 11.2 10.2 12.6 X X

EGFR 210984_x_at 5.6 10.0 9.0 10.8 X

AKIRIN2 223143_s_at 5.1 5.0 5.8 6.1 X

ARC 210090_at 5.8 6.8 6.3 9.3 X

ARL5B 242727_at 5.9 6.1 6.0 7.3 X X

CCNA1 205899_at 3.9 4.5 3.9 5.9 X X

EGR3 206115_at 5.6 7.1 6.1 9.3 X X

FOS 209189_at 5.2 7.1 7.2 9.1 X

IL12A 207160_at 5.4 5.7 5.8 6.9 X

PHLDA1 217997_at 4.6 4.6 4.6 5.9 X

SGMS2 242963_at 5.1 5.1 5.1 6.5 X

TAC1 206552_s_at 4.8 6.7 6.0 8.2 X X

TFPI2 209277_at 3.6 4.1 3.6 6.3 X X

TFPI2 209278_s_at 5.4 6.6 5.6 8.7 X X

HSPA1L 210189_at 7.5 8.2 7.4 8.7 X

HSPH1 208744_x_at 9.4 9.7 9.2 10.3 X

DNAJB1 200666_s_at 9.4 10.8 9.9 11.8 X

LOC100652898 227404_s_at 6.5 9.5 8.4 10.7 X

INSIG1 201627_s_at 11.0 11.5 10.6 11.7 X

DUSP6 208891_at 6.0 8.1 7.6 8.6 X

DNAJB1 200664_s_at 8.2 9.6 8.7 10.7 X

ANXA1 201012_at 6.1 6.8 6.6 7.8 X
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expression >2 and fdr <0.2, Table 2, Fig. 3). These probesets correspond to 15, 11 and 

26 different genes respectively. Genes speci�cally induced by EGFRvIII-BG expression 

include SOCS3, C10ORF10 and DTX3L (_10, 4, and 2-fold induction respectively). 

EGFRL858R-BG speci�cally induces the expression of ARC, TFPI2, SGMS2, ARLB5 

and CCNA1 (~8, 8, 3, 2 and 4-fold respectively). Gene expression analysis therefore 

indicates that different mutations in EGFR induce the expression of a unique set of 

genes.

We next analysed phosphoprotein levels by RPPA arrays on HOG cells stably express-

ing EGFRwt-BG, EGFRvIII-BG, EGFRL858R-BG or Bio-eGFP control. Three condi-

tions were examined: normal (serum supplemented cell culture), serum free and serum 

free, EGF stimulated. All data are listed in Supplementary Table 3. Analysis of EGFR 

on these arrays demonstrates that all stably transfected cell lines, apart from the Bio-

eGFP control, have increased levels of EGFR and show increased EGFR phosphoryla-

tion on pY1068 and pY1173. Serum deprivation does not result in a loss of EGFR 

phosphorylation (pY1068 and pY1173) which suggests that EGFR signalling remains 

active under these conditions. Finally, EGF stimulation results in a strong increase 

in EGFR_pY1068 (and to a lesser extent in pY1173), predominantly in EGFRwt-BG 

and EGFRL858R-BG expressing cells but also in BIOeGFP and expressing cells. EGF 

stimulation does not activate EGFRvIII-BG which is in-line with the fact that this 

mutation affects the EGF binding domain.

Table 2. Probesets that are differentially expressed between EGFRwt-BG v. EGFRvIII-BG, EGFRwt-BG v. EG-
FRL858R-BG, and EGFRvIII-BG v. EGFRL858R-BG as identified by SAM analysis (continued)

Gene_Symbol Probeset_ID eGFP EGFRwt EGFRvIII
EGFR-p.
L858R

wt v 
vIII

wt v 
L858R

vIII v 
L858R

KCTD12 212188_at 8.9 9.7 8.9 10.7 X

HSPA6 117_at 5.4 7.0 6.0 7.9 X

DUSP6 208892_s_at 5.1 7.3 6.8 7.9 X

KCTD12 212192_at 9.8 10.2 9.7 10.8 X

ZCCHC12 228715_at 9.0 10.0 9.0 10.9 X

ETV5 203349_s_at 5.5 8.6 8.0 9.3 X

EGR2 205249_at 6.1 7.6 6.8 9.4 X

C11orf96 227099_s_at 8.5 10.3 9.5 12.0 X

GPR50 208311_at 7.2 8.0 7.2 9.1 X

DOK5 214844_s_at 4.4 5.1 4.5 6.0 X

INSIG1 201625_s_at 9.2 9.8 9.0 10.2 X

Differentially expressed genes (>2 fold change in expression level, fdr <0.2) between mutations are marked 
with X in one of the last three columns.
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Figure 3. Genes that are differentially expressed be-
tween EGFRwt-BG v. EGFRvIII-BG, EGFRwt-BG v. 
EGFRL858R-BG, and EGFRvIII-BG v. EGFRL858R-
BG as identified by SAM analysis. Bio-eGFP control 
is included for reference. Scales are color coded from 
13.0 (red), 7.0 (grey) to 4.5 (blue) as RMA expression 
values.
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Figure 4. Proteins with >2 fold change in levels between different constructs as determined by RPPA analy-
sis. Shown are RPPA results of these proteins in cells expressing EGFRwt-BG, EGFRvIII-BG, EGFRL858R-
BG or Bio-eGFP control under normal cell culture conditions (serum supplemented) and serum free cultures 
± EGF. Colors are scaled from the minimum value (blue, -1.26), average (grey, 0.41) to max RPPA vaule (red, 
3.42). B) Confirmation by an independent RPPA experiment of AKT-pT308 (left) and MAPK_pT202 (right). 
Results of the original (exp-1) and confirmation (exp-2) are shown.
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To determine whether speci�c mutations induce differences in their downstream 

pathway activation, we screened all proteins that showed a >2-fold change in levels 

between different constructs (Fig. 4). Examples of differences identi�ed include, under 

serum conditions (i) lower levels of AKT-pT308 (and AKT_pS473) in EGFRL858R-

BG expressing HOG cells compared to EGFRwt-BG, EGFRvIII-BG or BIO-eGFP 

expressing cells; (ii) lower levels of MAPK_pT202 phosphorylation in EGFRvIII-BG 

expressing cells compared to those expressing EGFRwt-BG and EGFRL858R-BG. 

Virtually identical data were obtained in an independent RPPA experiment (Fig. 4, 

and Supplementary Fig. 2). Western blot experiments (independently performed) 

further con�rmed the differences in AKT-pT308 and MAPK_pT202 phosphorylation 

(Fig. 4). These data therefore indicate that different mutations in EGFR can induce a 

differential downstream pathway phosphorylation.

Because our results indicate that each mutation has unique molecular properties, we 

determined whether the various forms of EGFR also differentially affect cell physiology. 

HOG cells stably expressing EGFRvIII-BG and EGFRL858R-BG showed a decreased 

proliferation compared to bio-eGFP or EGFRwt-BG expressing cells (Fig. 5). The dif-

ferences between constructs were consistently observed over multiple experiments (n 

= 4 experiments, six wells/experiment and four locations/well). In a wound healing 
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Figure 5. Mutations in EGFR differen-
tially affect proliferation (top) and migra-
tion (bottom) in HOG cells stably trans-
fected with EGFRwt-BG, EGFRvIII-BG, 
EGFRL858R-BG or Bio-eGFP control. 
EGFRvIII-BG and EGFRL858R-BG have 
virtually identical migration.



99

EGFR mutation activates unique pathways

5

assay, the EGFRvIII-BG and EGFRL858R-BG expressing HOG cells also had a signi�-

cantly slower migration compared to bio-eGFP or EGFRwt-BG expressing cells (P < 

0.001, for all comparisons Fig. 5). The difference between constructs was consistently 

observed in two independent experiments (n = 2 experiments, six wells/experiment 

and three locations/well). These data therefore indicate that different mutations dif-

ferentially affect cell physiology.

DISCUSSION

In this study, we demonstrate different mutations in EGFR associate with different 

proteins, activate unique downstream signalling pathways (as shown by the induction 

of a unique set of genes and protein phosphorylation) and that cell lines expressing 

different EGFR mutation constructs display differences in physiology (proliferation 

and migration). Our data therefore demonstrate that different mutations have different 

functional consequences, which may provide an explanation for a tumour type speci�c 

mutation spectrum.

Our data are in line with other studies that highlighted differences between wildtype 

EGFR, EGFRvIII and/or EGFR p.L858R. For example, wildtype EGFR and EGFRvIII 

induce phosphorylation of different substrates, have differential activation of the 

JNK, STAT and MAPK signalling pathways, induce the expression of a unique set of 

genes and have differences in nuclear localisation [9–13,19]. Our data are also in line 

with a study showing that both wtEGFR and EGFRvIII interact with DNA–Protein 

Kinase (PRKDC) whereas EGFR p.L858R does not [19]: our biotin pulldown showed 

a ~two fold reduction in association with PRKDC of EGFRL858R-BG compared 

to both EGFRwt-BG and GFRvIII-BG (Supplementary Table 1). We did not observe 

differential association of EGFRwt-BG, EGFRvIII-BG and EGFRL858R-BG with CBL 

proteins, see [20]. However, binding to Cbl proteins occurs only after stimulation with 

EGF, whereas our cells were not EGF stimulated.

Apart from EGFR, a few proteins also show mutation speci�c binding partners and 

differential activation of downstream signalling pathways. Examples include TP53 

(R273H and R267P) and PIK3CA [21–24].

Because tumours often remain dependent on their acquired genetic changes for growth, 

these changes are direct targets for treatment. However, when each mutation activates 

a unique set of downstream pathways, it is possible each mutation will require speci�c 

inhibition. Indeed, different mutations in EGFR show differential sensitivity towards 
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inhibitors: activating mutation in the kinase domain are associated with response 

to erlotinib and ge�tinib whereas the EGFR p.A289D mutation is more sensitive to 

inhibition by lapatinib [7,25,26]. Moreover, kinase domain mutations do not occur in 

GBMs and inhibitors that act on these mutations (erlotinib and ge�tinib) do not show 

clinical bene�t in GBM patients eventhough EGFR is a driver in GBMs [27,28].

Our experiments demonstrate that a number of proteins differentially associate with 

EGFR constructs. It is interesting to note that mutations in DOCK4, UGGT1, MYCBP2 

and SMTN have been found both in GBMs (2/283, 4/283, 1/283 and 1/283 respec-

tively) and pulmonary adenocarcinomas (16/220, 7/220, 17/220 and 4/220). The �rst 

of these proteins that was further examined, DOCK4, associates with EGFRvIII-BG 

and, to a lesser extent, with EGFRwt-BG (but not with EGFRL858R-BG). DOCK4 is 

mutated in various tumors including bladder (~10%), colorectal (~10%) and lung 

(~7%). Two mutations in DOCK4 have thus far been identi�ed in GBMs. DOCK4 

is involved in cell migration through the activation of RAC1 [29,30]. Whether the 

difference in cell migration between EGFRwt-BG and EGFRvIII-BG is due to differ-

ential association with DOCK4 remains to be determined. DOCK4 also functions as 

a scaffold protein within the Wnt signaling pathway and is essential for activation 

of this pathway in vivo [18]. However, we did not �nd a mutation speci�c activation 

of the WNT pathway. A second differential binding protein, UGGT1, was found to 

predominantly associate with EGFRvIII-BG. UGGT1 plays a central role in the quality 

control of protein folding in the endoplasmic reticulum (glycosylated proteins) where 

it promotes substrate solubility [31]. It was recently demonstrated that the L858R 

mutation in EGFR reduces the disorganised conformation of the protein [32]. Because 

UGGT1 is involved in the quality control of protein folding, it is possible that the lack 

of association between UGGT1 and EGFRL858R-BG identi�ed in our study may be a 

result of an altered (i.e. less disorganised) conformation.

Similar to UGGT1, MYCBP2 also showed preferential association with EGFRL858R-

BG. MYCBP2 encodes an E3 ubiquitin ligase which mediates the ubiquitinylation and 

subsequent degradation of target proteins. The protein is involved in the regulation 

of the mTOR pathway: knockdown of MYCBP2 inhibits the mTOR pathway [33]. 

Finally, SMTN showed preferential association with EGFRL858R-BG. SMTN co-

localised with a-actin and is involved in the contraction of smooth muscle cells [34]. 

Whether the differential association with speci�c EGFR mutations affects the mTOR 

pathway or actin dynamics in tumour cells remains to be determined.

EGFR is a member of the ERBB protein family, a family of proteins that plays a role in 

several cancer types [35]. The various ERBB family members can heterodimerise with 
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each other, and each heterodimer can activate different signal transduction pathways 

[35,36]. Although we demonstrate in this manuscript that different EGFR mutations 

activate unique molecular pathways, it remains to be determined whether the differ-

ent mutations in EGFR also result in different heterodimerisation induced pathway 

activation. Of note, the various ERBB family members do not overtly show a tumor 

type speci�c mutation pattern [4,37].

Our results show that expression of EGFRvIII-BG or EGFRL858R-BG in HOG cells 

results in a decreased proliferation and migration, which may be counterintuitive 

for an oncogene. However, such reduced proliferation has been observed before in 

mutant melanoma cells where expression of EGFR confers a growth disadvantage that 

is further strengthened by the addition of EGF [38]. Perhaps this is caused when an 

oncogene (such as EGFR) is expressed in cells that have never been dependent on 

the oncogene (or the various mutations therein). A similar growth disadvantage (and 

altered migration pattern) was observed when expressing mutant (R132H) IDH1 into 

cell lines [39,40]. Interestingly, IDH1 also has a tumor-type speci�c mutation pattern 

[41,42].

In summary, our results indicate that there are distinct differences between different 

mutations in EGFR. Whether these different mutations also have different oncogenic 

properties remains to be determined. However, these functional differences can lead to 

the identi�cation of mutation-speci�c EGFR inhibitors.
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Supplementary Figure 1. A proximity ligation assay confirms that DOCK4 associated with EGFRwt-BG in 
cells that were serum starved overnight followed by EGF stimulation.
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ABSTRACT

Background

The ef�cacy of novel targeted therapies is often tested at the time of tumor recurrence. 

However, for glioblastoma patients, surgical resections at recurrence are performed 

only in a minority of patients and therefore molecular data are predominantly derived 

from the initial tumor. Molecular data of the initial tumor for patient selection into 

personalized medicine trials can therefore only be used when the speci�c genetic 

change is retained in the recurrent tumor.

Methods

In this study we determined whether EGFR ampli�cation and expression of the most 

common mutation in GBMs (EGFRvIII) is retained at tumor recurrence. Because 

retention of genetic changes may be dependent on the initial treatment, we only used a 

cohort GBM samples that were uniformly treated according to the current standard of 

care, chemo-irradiation with temozolomide.

Results

Our data show that, in spite of some quantitative differences, the EGFR ampli�cation 

status remains stable in the majority (84%) of tumors evaluated. EGFRvIII expression 

remained similar in 79% of GBMs. However, within the tumors expressing EGFRvIII-

at initial diagnosis, approximately half lose their EGFRvIII expression at tumor recur-

rence.

Conclusions

The relative stability of EGFR ampli�cation indicates that molecular data obtained 

in the primary tumor can be used to predict the EGFR status of the recurrent tumor 

but that care should be taken in extrapolating EGFRvIII expression from the primary 

tumor, particularly when expressed at �rst diagnosis.
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INTRODUCTION

Gliomas are the most common type of primary brain tumor of which 60-70% are di-

agnosed as glioblastoma multiforme (GBM), the most aggressive variant1. The current 

standard of care for GBM patients includes surgical resection followed by chemo-irra-

diation2. However, tumors invariably relapse and when this occurs, treatment options 

are limited. In fact, no standard of care exists for recurrent GBM patients. Nitrosoureas, 

retreatment with (dose-intense) temozolomide, and re-irradiation are often employed 

but have limited activity. Progression-free survival of recurrent GBM is 2-4 months and 

post-progression survival is 6-8 months with conventional chemotherapy 3.

Current efforts to improve treatment of GBMs are often based on a personalized 

medicine approach. In this approach, the ef�cacy of novel agents are tested on those 

tumors that harbor speci�c mutations. Personalized medicine trials will generally 

be performed after the standard of care treatment, at the time of tumor recurrence. 

However, surgical resections at recurrence are performed on a minority of glioma pa-

tients. Since marker testing based on circulating tumour DNA is not feasible (< 10% 

detection rate) for glioma patients 4, molecular data can only be derived from analysis 

of the tumor itself. Therefore, using molecular data of the initial tumor for inclusion 

into personalized medicine trials requires the speci�c genetic change to be retained in 

the recurrent tumor. A recent study on a limited set of low grade gliomas indicated 

that only ~50% of all mutations present in the primary tumor are also present in the 

recurrent tumor 5. Although this percentage was higher for the known causal cancer 

genes, this demonstrates the need to obtain more insight into the correlation between 

molecular changes of the primary and recurrent tumor, especially if this molecular 

change is the target for treatment at progression. A substantial difference between 

newly diagnosed and recurrent tumors will indicate that patients require re-surgery for 

inclusion into a personalized medicine trial.

The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is 

frequently ampli�ed and mutated in GBMs 6,7. The most common mutation found in 

GBM patients, the EGFRvIII mutation, is an in-frame deletion of exons 2-7 which 

results in the receptor being constitutively active. Because EGFR ampli�cation and 

EGFRvIII expression contribute to tumor formation, EGFR is a potential target for 

treatment in GBM patients 8-12. In this study we therefore screened for differences 

in EGFR status and EGFRvIII expression between tumors at initial diagnosis and at 

recurrence.
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METHODS

Samples

Glioblastoma samples were collected from two hospitals in the Netherlands (Erasmus 

MC, Rotterdam and MC Haaglanden, the Hague) from patients operated from 1999-

2013, who had resurgery at �rst recurrence. Use of patient material was approved by 

the Institutional Review Board of the respective hospitals. Patients were uniformly 

treated with chemoradiation with temozolomide2. All samples were evaluated for 

tumor content by a central review pathologist (J.M. Kros), samples with insuf�cient 

tumor content (<30%) were omitted from the analysis.

RT-qPCR

DNA and RNA were isolated using the Allprep DNA/RNA FFPE kit (Qiagen, Venlo, 

the Netherlands) according to the manufacturers’ instructions except for an extension 

of the prot K incubation step from 15’ to overnight. EGFR ampli�cation status and EG-

FRvIII expression was determined by (RT-) qPCR, using assays from Life Technologies 

(Bleiswijk, the Netherlands). The assay for EGFR DNA (assay number Hs02501405_

cn) was designed ~1100 bp downstream of exon 1 as few genomic changes occur in 

this region; genomic breakpoints giving rise to EGFRvIII occur further downstream in 

this intron13. Control probes for DNA were RNase P (TaqMan copy number reference 

assay) and BRAF (HS04949885). EGFR status was determined as the average of the Ct 

values of control probes – the average EGFR Ct values. The qPCR assay used correlated 

with EGFR ampli�cation status as determined by copy number arrays (n=5 Oncoscan 

DX, Affymetrix, Santa Clara Ca), examples are shown in supplementary �gure 1.

EGFRvIII expression was determined using RT-Q-PCR using a custom made prim-

ers/probe set designed over the exon 1-8 transition. Control RT-Q-PCR primers were 

targeted against EGFR wt (HS01076078_m1), RPL30 (Hs00265497_m1) and POP4 

(Hs00198357_m1). Samples in which EGFRvIII expression > 35 Ct values were 

scored as negative. EGFRvIII expression was scored as percentage of all EGFR tran-

scripts (EGFRvIII + EGFR wildtype (wt)). In this case, 30% expression of EGFRvIII 

indicates EGFRvIII expression is 1 Ct value lower than that of EGFR wt.

All primers showed linear ampli�cation over a wide range of Ct values (DNA content 

or RNA expression). This was observed in �ve independent samples. Slope of the 

dilution curve was also similar between the three primers used, which allows direct 

comparison between primers used. All (RT-) Q-PCR experiments were run in dupli-

cate. The concordance correlation coef�cient (LIN, equivalent to intraclass correlation 

coef�cient ICC), was used to assess similarities between EGFR measurements14.
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RESULTS AND DISCUSSION

EGFR amplification

A total of 89 patients were identi�ed, of which tissue of 76 patients was available from 

both resections. EGFR ampli�cation status could be determined in 55 primary-recur-

rent tumor pairs (table 1); in remaining patients we were unable to determine EGFR 

status in at least one of the two samples due to low tissue amounts (n=7), too low 

tumor content (n=1), insuf�cient DNA quality (n=10) or the block did not contain 

tumor tissue (n=3). Of these, EGFR ampli�cation, as de�ned by a ∆Ct >3 between 

controls and EGFR, (which corresponds to an approximately 8 fold (23) increase) was 

present in 40/55 (73%) samples at �rst diagnosis. High copy EGFR ampli�cation, i.e. 

those tumors having a ∆Ct >5, (~32 fold, 25) was observed in 23/55 (41%) samples. 

The patient cohort examined in this study therefore has a higher percentage of tumors 

with EGFR ampli�cation than reported in other studies 6,15. This higher percentage 

of EGFR-ampli�ed tumors may re�ect sample bias or may be caused by differences 

in sensitivity of the different techniques used. Alternatively, a higher percentage of 

EGFR-ampli�ed tumors may also be a result of selective enrichment for second surger-

ies (and re-treatment) of EGFR ampli�ed tumors.

To test whether EGFR ampli�ed tumors are more frequently eligible for resurgery, 

we have tested for such a selective enrichment on GBM samples treated within the 

Erasmus MC (between 1989 and 2005) as reported by us16. For this analysis, we used 

molecular subtyping based on gene expression data as a surrogate marker for EGFR 

ampli�cation: EGFR ampli�cation occurs predominantly in one molecular subtype 

(IGS-18, a subtype similar to ‘classical’ GBMs as de�ned by the TCGA)16,17. Of the 

tumors diagnosed as GBM at initial presentation, 32 were assigned to IGS-18 of which 

7 (22%) patients received resurgery. This frequency is ~2-3 fold lower in tumours 

assigned to other subtypes (where EGFR ampli�cation is infrequent) including IGS-

22 (1/12, 8.3%) or IGS-23 (6/47, 12.8% this subtype shows overlap with the TCGA 

‘mesenchymal’ GBMs). Although this difference is not statistically signi�cant, it does 

provides some support for the bias towards resurgery of EGFR ampli�ed tumors found 

in current. Of note, this potential bias was not observed in the TCGA dataset where 

20/39, 2/5 and 11/18 patients received resurgery (tumors assigned to IGS-18, IGS-22 

and IGS-23 respectively).

We have also compared clinical data from this study with data from GBMs in a his-

torical cohort (n=259) to screen for potential sample bias16. As may be expected, 

patients in the recurrent GBM cohort had a better performance score compared to 

the historical cohort (90.1±8.7 v. 81.6±17.0, P<0.0001, Ttest), and were of younger 
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age (51.2±12.7 v. 55.7±13.6, P<0.0001, Ttest). Our cohort also had a signi�cantly 

lower male/female ration compared to our historic cohort (48/42 v. 175/84, P=0.006, 

Fischers’ exact test). There were also some differences in tumor location (n=27, 15, 

7 and 36 v. n=40, 33, 12 and 29 for frontal, parietal, occipital and temporal location 

respectively), though this difference did not reach statistical signi�cance (P=0.06, Chi-

square test). However, re-resection of GBMs will only be performed on tumors that are 

relatively accessible for surgery, which inevitably results in a location bias.
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Figure 1. (A) Variability of EGFR amplification within biological replicates. As can be seen, the EGFR status 
between replicates was relatively constant in our samples. (B) EGFR amplification of primary versus recur-
rent glioblastomas. Although EGFR amplification varied between the primary and recurrent tumor, the dif-
ference was generally within 2.5 DCt values (dotted lines) of each other. (C) EGFRvIII expression, plotted as a 
percentage of all EGFR transcripts, is predominantly observed in samples with EGFR amplification (ie, those 
with dCt .3). Points in dark grey are from initial diagnoses, and light grey is from the recurrent tumor. (D) 
EGFRvIII expression in primary versus recurrent tumors. As can be seen, the relative expression of EGFRvIII 
was often lower in recurrent tumors than in primary tumors, with 7 samples showing EGFRvIII expression 
only in the primary tumor.
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6

EGFRvIII expression

Of the 76 patients with tissue available from the primary and recurrent tumor, EGFR-

vIII expression could be evaluated in 111 samples from 69 patients (table 1). Data from 

both primary and recurrent samples was generated for 42 patients; data from either the 

primary or recurrent tumor was of insuf�cient quality in the remaining 27 patients (in 

most cases, RT-QPCR could detect transcripts but the Ct values were too high to reli-

ably allow quanti�cation of EGFRvIII expression). EGFRvIII expression was detected 

in 34 samples and, apart from one (recurrent) sample, only occurred in samples with a 

genomic ampli�cation of the EGFR locus (�gure 1B). For the one sample with EGFR-

vIII expression without EGFR ampli�cation (patient CAC) it should be noted that high 

copy EGFR ampli�cation and EGFRvIII expression was detected in the primary tumor 

but the recurrent tumor had a much lower tumor content (30%). EGFRvIII expression 

was detected in 17/35 (49%) of primary tumors with EGFR ampli�cation (∆Ct >3), 

which is a similar frequency as previously reported6.

Similar to reported 15, our data show that EGFR ampli�cation status was highly vari-

able between tumors: while some tumors show only modest ampli�cation levels (3-4 

∆Ct values), other tumors showed a much stronger ampli�cation (up to 10 ∆Ct value 

difference between EGFR and controls). Although the EGFR ampli�cation status is 

variable between tumors, within biological replicates the EGFR status was relatively 

constant (n=22, �gure 1A). EGFRvIII expression was also highly variable between 

different tumors and ranged from < 1% up to >90% of all EGFR transcripts be-

ing EGFRvIII. EGFR ampli�cation and EGFR gene expression levels were correlated 

(�gure 2).

Most GBMs retain their EGFR amplification status at tumor recurrence

EGFR ampli�cation of the recurrent tumor did differ from the primary tumor but the 

difference was generally within 2-2.5 ∆Ct values of each other (�gure 1C). The overall 

concordance correlation coef�cient between primary and recurrent tumors was 0.65. 

Cases where the difference between primary and recurrent tumors was < 2.5 ∆Ct 

values (n=42 tumor pairs) were considered to have retained their EGFR ampli�cation 

status. In 13 tumors the difference in EGFR ampli�cation between primary and recur-

rent tumors was > 2.5 ∆Ct values; only four tumors showed a marked (≥ 4 ∆Ct values) 

difference between the initial tumor at recurrence. More detailed analysis failed to 

detect any speci�c characteristics for these tumors with respect to extent of resec-

tion, use of steroids, MGMT promoter methylation and tumor location. Also, whilst 

we do observe a slightly higher tumor content in the primary tumor (71%±14% v. 

63%±17%, P<0.001, paired T-test) this change is unlikely to explain discrepancies 

in EGFR ampli�cation status between the tumor at initial diagnosis and at recurrency: 
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a two-fold decrease in tumor content would result in a maximal decrease in Ct value 

of one (i.e. one PCR cycle). The EGFR ampli� cation status would change in eight/

thirteen samples showing a change > 2.5 ∆Ct values between primary and recurrent: 

Five from ampli� ed to non-ampli� ed (of which three from high copy ampli� cation i.e. 

∆Ct values >5 to not-ampli� ed) and three from EGFR not ampli� ed to ampli� ed (all 

of which resulting in moderate levels of EGFR ampli� cation i.e. ∆Ct values >3 but 

<5). Overall, the EGFR ampli� cation status (dichotomized to either non-ampli� ed or 

ampli� ed) remained identical in most tumor pairs (46/55; 84%, table 2).

Figure 2. Correlation between EGFR amplifi ca-
tion status (x-axis) and EGFR gene expression lev-
els (y-axis) as determined by (RT-)QPCR on tumor 
DNA or RNA.

Table 2. summary of EGFR and EGFRvIII data

EGFR in recurrent tumour

Non-amp Amp n

EGFR in primary 
tumour

Non-amp 10 5* 15

Amp 7* 33 40

n 17 38 55

EGFRvIII in recurrent tumour

Absent Present n

EGFRvIII in primary 
tumour

Absent 25 2 27

Present 7 8 15

n 32 10 42

Cutoff value for EGFR amplifi cation is ∆Ct>3 between EGFR and control probes. * Of the samples that change 
EGFR status from wt > amplifi ed or from amplifi ed > wt, 9 shown a difference in ∆Ct value > 2.5 between the 
primary and recurrent tumor. When considering a change in EGFR amplifi cation status also requires > 2.5 
∆Ct values difference between primary and recurrent tumors, 46/55 (84%) tumors retain their EGFR status. 
Only 5 show a difference in ∆Ct value > 3 between the primary and recurrent tumor.
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6

GBMs can lose EGFRvIII expression at tumor recurrence

The relative expression of EGFRvIII often was lower in recurrent tumors than that 

in the primary tumor. Of the 15 tumors with detectable EGFRvIII expression in the 

primary tumor, 8 showed a>20% decrease in relative abundance of EGFRvIII tran-

scripts (�gure 1D). In fact, in seven out of �fteen EGFRvIII positive tumors at �rst 

surgery, the EGFRvIII variant was lost at the time of progression. These data are in line 

with data reported in a different study using an unselected patient cohort18, although 

intratumoral heterogeneity may also explain part of this variability19,20.

Of the 15 tumors with EGFRvIII expression, corresponding EGFR ampli�cation status 

was available for 14. The majority of these (9/14) showed a relative increase in EGFR 

ampli�cation (∆Ct between the tumor at initial diagnosis and at recurrency between 0 

and 3), eventhough EGFRvIII expression decreased (n=8) or stayed the same (n=1). 

In fact only 3/14 showed concordant decrease in EGFR ampli�cation status( > 2.0 

∆Ct values between initial recurrent tumors) and decrease in EGFRvIII expression.

Qualitatively EGFRvIII status (present or absent) remained similar between the prima-

ry and recurrent tumor in 33/42 (79%) samples: in 25 samples EGFRvIII was absent 

from the primary and recurrent tumor, in 8 samples it was expressed in both (table 2). 

The loss of EGFRvIII expression may be explained by the hypothesis that EGFRvIII de-

letions occur after EGFR ampli�cation and that individual cells harbor varying levels 

of EGFRvIII5. Loss of EGFRvIII expression at tumor recurrent then represents clonal 

selection of the tumor. Indeed, gliomas are heterogeneous tumors in which distinct 

subpopulations of cells, each with different genetic makeup, exist5,21. However, recent 

evidence also suggests the genomic EGFRvIII deletion is an early event and that EG-

FRvIII expression is regulated by the tumor19. In fact, mice experiments demonstrated 

that at regrowth, the ratio of EGFRwt/EGFRvIII expression is similar to the primary 

tumor even when sorting for EGFRvIII high or low expressing tumor cells22 (see also 
23). Loss of EGFRvIII expression then is a result of epigenetic regulation.

In summary, our data show that, in spite of some quantitative differences, the EGFR 

ampli�cation status remains stable in the majority (~84%) of tumors evaluated. 

EGFRvIII status also remained similar in 79% of GBMs; however when focusing on 

EGFRvIII expressing tumors, only 50% retain EGFRvIII expression at recurrence. The 

relative stability of EGFR ampli�cation expression therefore indicates that molecular 

data obtained in the primary tumor can be used to predict the EGFR status of the 

recurrent tumor. Care should be taken in extrapolating EGFRvIII expression, in tri-

als on recurrent glioblastoma that target EGFRvIII mutations a rebiopsy should be 

considered.
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Supplementary Figure 1. Correlation Q-PCR with CNV by Oncoscan DX arrays. Three examples showing 
Q-PCR results (DCt) and copy number and B-allele frequency of chromosome 7. A: Example 1: EGFR ampli-
fied. Patient CCZ, sample at first diagnosis. EGFR amplficiation is visualized by the focal increase in copy 
number. QPCR DCt results for this sample was 8.4. On top of the high copy EGFR ampification, trisomy of 
chromosome 7 is seen. B: Example 2: EGFR wt. Patient CBH, sample at first diagnosis. QPCR DCt = 1.0. C: 
Example 3: EGFR amplified. Patient CCV, sample at first diagnosis. QPCR DCt = 8.1.
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ABSTRACT

Introduction

The EORTC22033-26033 clinical trial (NCT00182819) investigated whether initial 

temozolomide (TMZ) chemotherapy confers survival advantage compared to radio-

therapy (RT) in low grade glioma patients (LGG). In this study we performed gene 

expression pro�ling on tissues from this trial in order to identify markers associated 

with progression free survival and treatment response.

Methods

Gene expression pro�ling, performed on 195 samples, was used to assign tumors to one 

of six intrinsic glioma subtypes (IGS; molecularly similar tumors as previously de�ned 

using unsupervised expression analysis) and to determine the composition of immune-

in�ltrate. DNA copy number changes were determined using OncoScan arrays.

Results

We con�rm that IGS-subtypes are prognostic in the EORTC22033-26033 clinical trial. 

Speci�c genetic changes segregate in distinct IGS subtypes: most samples assigned to 

IGS-9 have IDH-mutations and 1p19q codeletion, samples assigned to IGS-17 have 

IDH-mutations without 1p19q codeletion and samples assigned to other intrinsic 

subtypes often are IDH-wildtype. A trend towards bene�t from RT was observed for 

samples assigned to IGS-9 (HR for TMZ is 1.90, P=0.065), but not for samples as-

signed to IGS-17 (HR 0.87, P=0.62). We did not identify genes signi�cantly associated 

with progression free survival (PFS) within intrinsic subtypes, though follow-up time 

is limited. We also show that LGGs and GBMs differ in their immune-in�ltrate which 

suggests that LGGs are less amenable to checkpoint inhibitor type immune therapies. 

Gene-expression analysis also allows identi�cation of relatively rare subtypes. Indeed, 

one patient with a pilocytic astrocytoma (PA) was identi�ed.

Conclusion

Intrinsic glioma subtypes are prognostic for PFS in EORTC22033-26033 clinical trial 

samples.
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INTRODUCTION

Low grade or grade II gliomas (LGGs) are a heterogeneous set of primary brain tumors 

that mainly occur in the 4th and 5th decade of life 1,2. The incidence is relatively low 

(< 1 per 100.000 persons/year) and, as they are slow growing tumors, patients have 

a relatively favorable prognosis, especially compared to gliomas of higher grade. Nev-

ertheless, LGGs have the tendency to evolve into gliomas of higher grade, and most 

patients will ultimately die from the disease 3,4. Based on their histological appearance, 

three subtypes of LGG can be distinguished: oligodendrogliomas, astrocytomas and 

mixed oligoastrocytomas. The current WHO classi�cation has incorporated molecular 

markers (1p19q codeletion, and mutations in the IDH1/2 and ATRX genes) to delin-

eate astrocytoma and oligodendroglioma, but no longer considers oligoastrocytomas 

as a separate entity as they cannot molecularly be distinguished from other entities. 2,5

Treatment options for LGG patients include surgery, radiotherapy (RT) and chemo-

therapy (or combinations thereof), or a watchful waiting strategy can be adopted 4,6. 

Nevertheless, the optimal management of patients with a LGG has remained controver-

sial and only relatively few randomized phase III clinical trials have been performed. 

Earlier trials focusing on the effect of RT showed no effect of RT dosing on overall 

survival and, in a separate trial, there was no effect of early vs delayed RT after surgery 

on overall survival 7-9. Data from two large randomized clinical trials recently reported 

on the ef�cacy of chemotherapy in LGGs. Firstly, the RTOG9802 clinical trial, ex-

amining the role of the addition of procarbazine, lomustine and vincristine (PCV) 

chemotherapy after RT, showed improved survival of this regimen when compared 

to RT only 10. Second, the EORTC22033-26033 clinical trial examined the role of RT 

vs temozolomide (TMZ) chemotherapy and found no difference between the two on 

progression free survival (PFS) or in quality of life 11,12. Because of the limited follow-

up time, data on overall survival is not available.

Interestingly, correlative molecular marker analysis in the EORCT22033-26033 

study identi�ed a subpopulation of patients that bene�t from RT: Within the group 

of patients harboring tumors with an IDH mutation and in which the 1p and 19q 

chromosomal arms were not codeleted (‘Molecular Astrocytomas’), an improved PFS 

was noted when they were treated with RT. No such bene�t was observed within the 

group of IDH-mutated, 1p19q-codeleted tumors (‘Molecular Oligodendrogliomas’) 11. 

We have previously shown that gene-expression pro�ling and subsequent molecular 

subtyping based on the gene-expression pro�le (intrinsic glioma subtypes) can iden-

tify prognostic subgroups and identify genes and subtypes that are associated with 

response to treatment 13-15. In this study we have therefore performed gene expression 
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pro�ling, and associated immunophenotyping, of 195/477 samples included in the 

EORTC22033-26033 clinical trial to identify markers associated with survival and to 

aid in the identi�cation of patients that bene�t most from RT or TMZ treatment.

METHODS

Patient samples

Patients were considered eligible in the EORTC22033-26033 trial (clinical trial identi-

�er NCT00182819), if they had been diagnosed with a histologically con�rmed supra-

tentorial, diffusely in�ltrating grade II glioma (either astrocytoma, oligoastrocytoma or 

oligodendroglioma) according to the WHO 2006 classi�cation 16. Patients should present 

with at least one high-risk feature (age ≥40 years, progressive tumor disease, tumor size 

>5 cm, tumor crossing the midline, neurological symptoms). Details of the eligibility 

criteria and the consolidated standards on reporting trials (Consort) �ow diagram have 

been described previously 11. Patients were registered for the trial at any time after initial 

diagnosis (allowing for tissue collection and molecular analysis) and randomized at a 

time-point when treatment was required. A total of 707 patients were registered in the 

EORTC22033-26066 study of which 477 were randomized to receive either RT or TMZ. 

For this analysis a clinical cut-off date of 17th of January 2013 was used and the database 

was locked on 7th of August 2013. IDH mutation status and 1p/19q codeletion status were 

obtained as described in Baumert et al 11. MGMT methylation status was determined using 

the MGMT-STP27 algorithm based on genome wide methylation array data 17 (Bady et al, 

submitted). All patients gave written informed consent for correlative molecular analysis.

RNA isolation and array hybridization

Suf�cient material for expression analysis was available for 203/477 randomized pa-

tients. Eight samples failed QC so that expression pro�les from a total of 195 samples are 

presented here. Of these, RNA was isolated from FFPE tissue blocks (n=166) or from 

snap frozen tissue samples (n=29). RNA extraction, puri�cation and quanti�cation 

from FFPE and FF material was reported previously 18,19. Puri�ed RNA (250 ng) was 

used for labeling and hybridization on DASL beadchips (Illumina, San Diego, CA) that 

were run by Service XS, Leiden, the Netherlands. Expression data were quantile normal-

ized and corrected for batch effects using preprocessCore (Bioconductor) and ber (R) 

packages respectively. RNA expression pro�les were then assigned to one of six intrinsic 

molecular subtypes of glioma as previously de�ned 18, using the ClusterRepro R package 
20. These intrinsic subtypes can be recapitulated on FFPE material with high concordance 

and using various expression pro�ling platforms 13,14,19. SAM analysis was performed 

on FFPE samples using SAMR, an R package 21. The SAM approach to identify genes 



129

IGSs are prognostic for PFS in EORTC 22033-26033 clinical trial samples

7

associated with treatment response is similar to previously reported 14,22. Expression data 

are available via NCBI GEO datasets, GSE107850. Analysis of the immune in�ltrate was 

assessed using the immunophenoscore R script (https://github.com/MayerC-imed/Im-

munophenogram) 23. Glioblastoma samples of patients treated in the BELOB trial were 

used for immunophenotype comparison between low and high-grade gliomas14.

DNA isolation and Genotyping

DNA was extracted for genotyping on a subset of samples using a QIAamp DNA FFPE 

tissue kit (Qiagen). Genotyping was performed using the OncoScan FFPE assays Kit 

(Affymetrix, Santa Clara, CA), a platform that allows determing copynumber changes 

and loss of heterozygosity (LOH) in FFPE samples using molecular inversion probes 24,25. 

Copynumber changes were analyzed using Nexus Express for Oncoscan (Affymetrix).

Statistical analysis

Distribution of frequencies were compared between subtypes using the Chi-squared 

test. A Fishers’ exact test was used in case the assumptions for chi-square distribution 

were violated as indicated in the respective tables. Kaplan–Meier survival curves were 

compared using the log-rank test using the survival package in R26. PFS was calculated 

from the time of initial diagnosis/surgery to the date of clinical or radiological progres-

sion or death (whichever occurred �rst). The signi�cance of prognostic factors was 

determined with a multivariate analysis using Cox regression.

RESULTS

Expression data was generated successfully for 195/477 samples and most parameters 

were balanced between the ‘included’ (i.e. those with gene expression data) and the ‘not 

included’ cohort. However, the ‘included’ subset contained fewer biopsies, which may be 

expected due to the limited amounts of tissue available from this type of material (table 

1). The included cohort also contained a higher proportion of astrocytomas and IDH-

wt tumors. Interestingly, both variables are correlated with type of surgery: biopsies are 

more frequently performed in WHO2006 astrocytomas compared to non-astrocytomas 

(91/189 [48%] v. 75/287 [26%], P<0.0001) and biopsies are more often performed on 

IDH-wt tumors (41/65 [74%] v. 107/326 [33%], P<0.0001). Despite these differences, 

progression free survival of included vs not included patients was similar (39.8 vs 43.8 

months respectively, supplementary �gure 1). Progression free survival of included vs 

not included was also similar within the molecularly de�ned subgroups ‘IDH-mutated, 

1p19q codeleted (molecular olidogendrogliomas)’, ‘IDH-mutated, 1p19q non-codeleted 

(molecular astrocytomas)’ and ‘IDH-wt’ (supplementary table 1).
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Intrinsic glioma subtypes are prognostic in EORTC22033-26033 trial samples

Expression data from clinical trial samples were assigned to one of six ‘Intrinsic Glioma 

Subtypes’ (IGS-9, IGS-16, IGS-17, IGS-18, IGS-22 or IGS-23) as previously de�ned 17. 

As can be expected in LGGs, the majority of samples were assigned to the prognosti-

cally favorable subtypes IGS-9 and IGS-17 (n=74 and 115 respectively, �gure 1 and 

table 2). In concordance with previously published data, samples assigned to IGS-9 

predominantly had an IDH mutation (68/69), had 1p19q codeletion (45/68) and were 

diagnosed as oligodendroglioma (52/74, supplementary table 2) 13,18. Samples assigned 

to IGS-17 predominantly contained tumors with an IDH-mutation (97/108), but 1p19q 

codeletion was rarely observed (17/102) and tumors were more frequently diagnosed, 

Table 1. Comparison between included vs not included samples

variable All Included Not inc P

Treatment RT 240 96 144 0.760

TMZ 237 99 138

Type of surgery Biopsy 189 38 151 <0.001*

Partial resection 206 116 90

Total resection 81 41 40

n/a 1 0 1

Histology Astrocytoma 167 51 116 0.002

Oligoastrocytoma 118 51 67

Oligodendroglioma 192 93 99

Performance 0 294 122 172 0.86

1 165 65 100

2 18 8 10

Gender Female 202 85 117 0.71

Male 275 110 165

IDH mutation status Mutated 327 166 161 <0.001

Normal 65 14 51

n/a 85 15 70

1p19q status Codeleted 117 63 54 0.25*

Intact 240 112 128

n/a 120 20 100

MGMT methylation Methylated 113 102 11 1 **

Unmethylated 7 7 0

Age Age (years) mean ± SD 44.6 ± 11.7 43.9 ± 11.1 45.1 ± 12.2 0.31

< Median 238 101 137 0.55

> Median 239 94 145

Abbreviations: RT: radiotherapy; TMZ: temozolomide. Performance: ECOG performance score. Chi squared 
test comparison between included vs not included samples only; Note on performance score, Chi-square test 
without performance score 2 also has P<0.001. *: Chi-squared test performed without n/a samples, **: Fish-
ers’ exact test.
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based on local diagnosis, as astrocytoma or oligoastrocytoma (76/115). In the samples 

assigned to other molecular subtypes (n=6), IDH-mutations were infrequent (1/5) as 

was 1p19q codeletion (1/5).

Patients with most favorable prognosis were those with tumors assigned to IGS-9 (PFS 

53 months) or IGS-17 (PFS 40 months), and patients with worst prognosis were those 

assigned to other molecular subtypes (11.8 months, �gure 2). Differences between all 

groups were signi�cant (logrank P<0.0001), differences between the two most favor-

able subtypes, IGS-9 and IGS-17, were however, not signi�cant (P=0.17, HR 0.74, 

95% CI [0.49-1.13], though this could be related to limited follow-up time in which 

relatively few events have occurred. The IGS-‘other’ subtype remained signi�cant in a 

multivariate analysis that included other known prognostic factors such as age, type of 

surgery, histological diagnosis, treatment and performance score (table 3).

Treatment response per IGS-subtype

A trend towards bene�t from RT compared to TMZ was observed for samples as-

signed to IGS-9 (HR for TMZ is 1.90, 95% CI [0.95, 3.80], P=0.065, �gure 3). No 

such difference was observed for samples assigned to IGS-17 (HR for TMZ vs RT is 

0.87, 95% CI[0.50, 1.51], P=0.62). Too few patients were assigned to other molecular 

Figure 1. Heatmap showing association of gene-expression with clinical, pathological and other molecular 
data (IDH-mutation status, MGMT-promoter methylation status, 1p19q codeletion, intrinsic glioma subtype 
and immunophenoscore). As can be seen, most patients assigned to IGS-9 have 1p19q codeletion and are 
diagnosed as oligodendrogliomas.
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subtypes to assess response to treatment. Our gene expression data therefore provides 

preliminary evidence that patients with tumors assigned to IGS-9 can bene�t from RT 

whereas no such bene�t is observed in tumors assigned to IGS-17. It should be stressed 

however, that this is a post-hoc analysis performed on a subset of samples included in 

the EORTC22033-26033 clinical trial.

No genes were found to be signi�cantly associated with progression free survival 

within molecular subgroups by SAM analysis, also not when subgroups were strati�ed 

by treatment. Identi�cation of such genes may require a more mature dataset.

Table 2. Association between specific genetic changes, histology and IGS-subtype

variable IGS-9 IGS-17 IGS other not inc P

All samples 74 115 6 282

Treatment RT 38 54 4 144 0.66

TMZ 36 61 2 138

Type of surgery Biopsy 13 22 3 151 0.87

Partial resection 46 67 3 90

Total resection 15 26 0 40

n/a 0 0 0 1

Histology Astrocytoma 11 38 2 116 p<0.001

Oligoastrocytoma 11 38 2 67

Oligodendroglioma 52 39 2 99

Performance 0 58 61 3 172 <0.001

1 16 46 3 100

2 0 8 0 10

Gender Female 35 48 2 117 0.55

Male 39 67 4 165

IDH status Mutated 68 97 1 161 0.09

Normal 1 9 4 51

n/a 5 9 1 70

1p19q status Codeleted 45 17 1 54 < 0.001

Intact 23 85 4 128

n/a 6 13 1 100

MGMT Methylated 45 56 1 11 0.04

Unmethylated 0 7 0 02

Age Age (years) mean ± SD 47.2 ± 10.7 42.1 ± 11.0 38.8 ± 7.5 45.1 ± 12.2 0.013*

< 44.6 years 25 72 4 137 <0.001

> 44.6 years 49 43 2 145

Chi squared test comparison between IGS-9 and IGS-17 only; Note on performance score, Chi-square test 
without performance score 2 also has P<0.001. IDH-mutation status was done using a Fishers’ exact test. *: 
Anova based on all categories, anova on only IGS-9 and IGS-17: P= 0.002; anova of IGS-9, IGS-17 and IGS-
other: P=0.004.
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Immunophenotyping

Transcriptomic analysis has recently proved a valuable tool in the prediction of response 

to checkpoint inhibitors in various tumor types. This response prediction is done by a 

deconvolution of the gene expression data and subsequent cataloguing of the immune 

in�ltrate of the tumor 23. ‘Immunophenotyping’ has thus far only been performed on 

historical and archival samples which makes it dif�cult to estimate the relevance of 

potential confounding clinical and patient parameters. We therefore analysed the im-

mune in�ltrate of samples included in the EORTC22033-26033 clinical trial. We also 

included data from the BELOB trial, a randomized phase II trial on recurrent glioblas-

tomas (GBM, n=110, expression data from the initial tumor) to allow comparisons 

between LGG and GBM 14. Such comparison is possible as the GBM samples were run 

on the same platform, and processed in batches alongside the EORTC22033-26033 

samples. Any analysis involving clinical parameters were analyzed within the indi-

vidual clinical trials to avoid potential patient bias.

In general, LGGs have a slightly lower overall immunophenoscore (IPS, a score derived 

from immunophenotyping that is associated with response to checkpoint inhibitors 

in melanomas) than GBMs (P=0.004). Speci�cally, LGGs score higher on checkpoint 

(CP) and suppressor cell (SC) populations, but score lower on the effector cell (EC) and 

antigen processing (MHC) populations. This difference was apparent per IPS score 

(supplementary �gure 2). For example, LGGs and GBMs with IPS score of 4 have an 

MHC score of respectively 0.86±0.16 and 1.21±0.24 (P<0.0001, n=77 and n=25). 

Similarly, LGGs with an IPS score of 5 have an SC score of 0.005±0.13 whereas GBMs 

have a score of -0.29±0.18 (P<0.001).

Table 3. Multivariate analysis for PFS

HR SE p 95% CI

Age 0.97 0.01 0.014 0.95-0.99

Type of Surgery Partial resection vs. Biopsy 0.80 0.27 0.424 0.47-1.37

Total resection vs .Biopsy 0.76 0.33 0.409 0.40-1.45

Histology Oligoastrocytoma vs. Astrocytoma 0.87 0.29 0.620 0.49-1.52

Oligodendroglioma vs. Astrocytoma 0.89 0.24 0.650 0.55-1.45

Treatment TMZ vs RT 1.41 0.22 0.113 0.92-2.14

Gender Male vs. Female 1.21 0.21 0.375 0.80-1.82

Performance ECOG 1 vs. ECOG 0 0.77 0.23 0.267 0.49-1.22

ECOG 2 vs. ECOG 0 4.49 0.45 0.001 1.87-10.73

IGS-subtype IGS-9 vs. IGS-17 0.96 0.24 0.864 0.60-1.54

IGS-other vs. IGS-17 7.40 0.50 0.000 2.75-19.89

n= 195, number of events= 101
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Within the EORTC22033-26033 samples, the Immunophenoscore was signi�cantly 

correlated to histological subtype of the tumor (P< 0.001), presence or absence of 

IDH mutations (P= 0.03), but not to gender, age, MGMT-promoter methylation 

status, 1p19q codeletion or IGS-subtype (Chi squared test). Within the BELOB trial, 

correlation between immunophenoscore and IDH-mutations could not be con�rmed, 

though the number of IDH-mutated tumors in that cohort was low (n=5). In fact, 

the immunophenoscore was not associated with any clinical or molecular parameter 

in this trial (age, gender, IGS-subtype, treatment, MGMT-promoter or IDH-mutation 

status). In neither trial, IPS score was associated with outcome (supplementary �gure 

3). In summary, IPS score appears to be independent of known clinical and prognostic 

molecular markers. Moreover, the higher IPS score in GBMs suggests that LGGs are 

less amenable to checkpoint inhibitor type immune therapies.
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Figure 2. Intrinsic glioma subtypes are prognostic for progression free survival in patients treated within the 
EORTC22033-26033 clinical trial. Patients with most favorable prognosis were those with tumors assigned 
to IGS-9 (grey) or IGS-17 (dotted), and patients with worst prognosis were those assigned to other molecular 
subtypes (black), P<0.0001.
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Identification of pilocytic astrocytoma in 22033 clinical trial samples

Three out of the 195 samples were assigned to IGS-16 in the EORTC-22033 dataset. 

A hallmark of IGS-16 is that pilocytic astrocytomas (PAs, gliomas with favorable 

prognosis) are almost always assigned to this speci�c subtype 18. However, this expres-

sion based intrinsic subtype does not only contain PAs; other histological subtypes of 

gliomas (including GBMs) may also be assigned to IGS-16. As it is sometimes dif�cult 

to distinguish between pilocytic and grade II astrocytomas by histology, it is therefore 

possible that one or more of the three EORTC 22033 samples assigned to IGS-16 are 

actually PAs 27. Additional genetic testing to determine diagnosis is therefore required.

We therefore screened for typical genetic hallmarks of PAs (i.e. tandem duplication of 

7q34 involving the BRAF locus 28 29) in samples assigned to IGS-16. Genotyping arrays 

were used to determine the genetic changes in these samples. One of the three samples 

assigned to IGS-16 indeed showed the characteristic tandem duplication on 7q34, and 

a lack of other genetic changes (�gure 4). The centromeric breakpoint lies within the 

BRAF locus. Of note, 12 samples from the TCGA dataset (combined LGG and GBM) 

are also assigned to IGS-16 30-32, and analysis of the genotype con�rms that one of these 

samples (TCGA-HT-7691) harbors a BRAF-KIAA1549 gene-fusion (and no other 

notable mutations and/or copy number aberrations). Genotyping analysis therefore 

indicates that at least one sample of the EORTC22033 clinical trial (and one TCGA 

sample in other datasets) can molecularly be classi�ed as a pilocytic astrocytoma.
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Figure 3. Progression free survival stratified by IGS-subtype and treatment: Samples assigned to IGS-9 show 
a trend towards benefit from RT compared TMZ (left panel, HR for TMZ is 1.90, P=0.065). No such difference 
was observed for samples assigned to IGS-17 (right panel, HR for TMZ vs RT is 0.87, P=0.62. Too few patients 
were assigned to other molecular subtypes to assess response to treatment (not shown).
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DISCUSSION

In this study we have performed gene-expression pro�ling on samples of patients that 

were treated within the EORTC22033-26033 clinical trial. We show that intrinsic 

glioma subtypes show overlap with histological and molecular subtypes of glioma and 

that the IGS- subtypes are prognostic for PFS. Our data are in line with other stud-

ies that demonstrated the prognostic signi�cance of gene-expression-based molecular 

subtypes in gliomas, but is only the second to be performed on randomized phase III 

clinical trial material 13,18,31,33,34. We con�rm earlier observations that speci�c genetic 

changes segregate in de�ned IGS-subtypes 13,14,18.

The randomized phase III clinical trial EORTC22033-26033 was initiated to optimize 

treatment for LGG patients. The overall trial result demonstrated equal ef�cacy of RT 

v. TMZ monotherapy in LGG patients both on PFS and quality of life 11,12. Interestingly, 

correlative molecular marker analysis provided evidence for reduced bene�t from TMZ 

in patients with IDH-mutated, 1p19q intact tumors. Our gene expression data did not 

support this observation: we show that samples assigned to IGS-17, of which most are 

IDH- mutated and 1p19q intact, have equal bene�t from RT and TMZ.

The difference in the predictive effect between IGS-subtype and IDH-mutant, 1p19q 

codeleted tumors (despite a large degree of overlap in samples), may be explained by 

the fact that IGS subtyping probes a different type of tumor characteristic and thus 

Chr 1 2 YX201817161514131211109876543 22

Chr 7

Figure 4. Identification of a pilocytic astrocytoma in a sample of the EORTC22033-26033 clinical trial. Three 
out of the 195 samples were assigned to IGS-16, a subtype to which pilocytic astrocytomas are assigned. In one 
of these samples we identified classical hallmark genetic changes of PAs: a tandem duplication on 7q34 (lower 
panel) and a marked absence of other genetic changes (upper panel). The centromeric breakpoint lies within 
the BRAF gene between 140.5 and 140.57 Mb, the Q-terminal breakpoint lies between 142.65 and 143.03 Mb.
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is not identical to molecular marker analysis of 1p19q and IDH-status. Analysis of 

DNA markers such as 1p19q and IDH-status do not take epi-genetic or phenotypic 

variability (such as those associated with tumor grade) into account. Alternatively, our 

gene-expression analysis only examined a subset of tumors, and those contained fewer 

biopsies and fewer astrocytomas compared to the entire dataset. The difference in the 

predictive effect between IGS-subtype and 1p19q (intact or codeleted) in IDH-mutant 

tumors may however, at least in part, also be explained by an incorrect determina-

tion of molecular markers. For example, IGS-subtyping has a degree of error due to 

e.g. intratumoral heterogeneity or effects of RNA-quality on tumor classi�cation 35,36. 

Alternatively, the various methods to determine 1p19q codeletion also do not always 

give concordant results 37,38.

Several older trials have also analyzed the ef�cacy of alkylating chemotherapy in 1p19q 

intact low grade gliomas. One trial demonstrated ef�cacy of procarbazine, CCNU and 

vincristine (PCV) monotherapy in LGG, and the ef�cacy was not associated with 

1p/19q codeletion (though numbers for correlative marker analysis were small) 39. A 

separate trial that examined the ef�cacy of the addition of chemotherapy to RT also 

showed that both LGG tumors with and without 1p19q codeletion responded to TMZ, 

though tumors with 1p19q codeletion showed a higher response rate 40. Since 1p19q 

codeletion is associated with histological subtype, data from the recently published 

RTOG9802 trial also con�rm the ef�cacy of combined RT + PCV treatment: ef�cacy 

was observed in all histological subtypes. Similar data, but on grade III gliomas, con�rm 

the ef�cacy of PCV chemotherapy in both 1p19q codeleted and non codeleted tumors 
41-43 44. Data from these trials and data obtained in the current study therefore suggest 

that alkylating chemotherapy is effective in IDH-mutated, 1p19q intact gliomas, though 

it is possible that the response duration is shorter than in 1p19q codeleted gliomas.

Checkpoint inhibitors have recently gained attention as novel therapeutic agents in 

various cancer types including GBMs 45-48. Since only a subset of patients bene�t from 

these treatments, identi�cation of (bio-) markers associated with response is of clinical 

relevance. The mutational load, i.e. the number of mutations that lead to a neo-epitope 

of the tumor, has been coined as predictive response marker. However, analysis of the 

tumors’ immune in�ltrate, which can be done by a deconvolution of the gene expression 

data, also can identify tumors likely to respond 23. Such ‘Immunophenotyping’ has thus 

far only been performed on historical and archival samples which makes it dif�cult to 

estimate the relevance of potential confounding clinical and patient parameters. Our 

gene expression data from the EORTC22033-26033 and BELOB clinical trials there-

fore can help determine the relevance of immunophenotyping in glioma samples. Our 

data show that in neither trial, IPS score was associated with outcome and that the IPS 
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score appears to be independent of known clinical and prognostic molecular markers. 

Nevertheless, GBMs in general have a higher IPS score and score higher on the effector 

cell and antigen processing populations than LGGs (even within de�ned IPS scores). 

These data suggest that LGGs are less amenable than GBMs to checkpoint inhibitor 

type immune therapies, which is in concordance with �ndings from other groups 49.

Our gene expression analysis has also identi�ed one patient treated within 

EORTC22033-26033 with the hallmark genetic change of PAs: tandem duplication of 

7q34. It is important to identify such patients as they have better prognosis and require 

a different treatment than diffuse low grade gliomas50. We identi�ed this patient based 

on the assignment of the tumor to IGS-16. However, IGS-16 does not only contain PAs: 

a few samples (of other histological subtypes with associated poorer prognosis) are also 

assigned to IGS-16, which necessitates additional molecular testing. The PA identi�ed 

in the EORTC22033-26033 clinical trial also highlights dif�culties to distinguish this 

tumor type by histology27. In addition to the EORTC22033-26033 trial sample, we also 

identify a PA sample in the TCGA dataset. Additional genomic testing of samples as-

signed to IGS-16 therefore may be warranted.

To summarize, gene-expression pro�ling of samples included in the EORTC22033-26033 

clinical trial con�rmed the prognostic relevance of IGS subtyping. We failed to �nd 

evidence for differential treatment bene�t in one or more speci�c molecular subgroups. 

IGS-subtyping has also identi�ed one PA in the EORTC22033-26033 clinical trial and 

one in the TCGA database.
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Supplementary Table 1. Survival per molecular subtype included vs not included

Molecular subset inc/not inc n events median 0.95LCL 0.95UCL

all patients included 195 101 43.5 37.7 52.7

not included 282 161 39.8 35.3 47.7

IDH-mutated, 1p19q codeleted included 60 26 55.1 35.3 NR

not included 44 15 NR 41.2 NR

IDH-mutated, 1p19q intact included 92 47 46.5 40.5 56.8

not included 73 37 48.2 34.7 NR

IDH-wt included 14 10 16.6 9.6 NR

not included 51 42 20.6 15.1 27.3

NR: not reached

Supplementary Table 2. correlation of molecular markers with IGS-subtype

IDH status 1p19q status IGS-9 IGS-17 IGS-other not included

IDH mutated 1p19q 43 17 0 44

no codel 20 71 1 73

undetermined 5 9 0 44

IDH wt 1p19q 0 0 1 6

no codel 0 7 3 32

undetermined 1 2 0 13

IDH undetermined 1p19q 2 0 0 4

no codel 3 7 0 23

undetermined 0 2 1 43
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Supplementary Figure 1. Survival between ‘included’ and ‘not-included’ (i.e. those in which gene expression 
analysis was performed or not). No differences between included and not included were identified, also not 
when stratified by molecular subgroup (IDH-mutation and 1p19q codeletion, not shown).
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Supplementary Figure 2. Immunophenotypes in 22033 and BELOB clinical trials. A: distribution of IPS 
scores in the EORTC22033-26033 (LGG) and BELOB (GBM) clinical trials. As can be seen, GBMs tend to 
have higher IPS scores than LGGs. Other figures represent the immune infiltrate per IPS score stratified by 
the EORTC22033-26033 (LGG) and BELOB (GBM) trials. As can be seen, GBMs have more MHC expression 
(B) and higher effector cell population (C) per IPS score. In contrast LGGs have higher suppressor and im-
munemodulator (D and E).



Supplementary Figure 3. Survival per IPS score in the EORTC22033-26033 and BELOB clinical trials. IPS 
score is not associated with improved outcome in either trial.
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Diffuse gliomas are the most common type of malignant primary brain tumors. New 

treatment options are urgently needed as the prognosis for the majority of glioma 

patients remains dismal. Novel therapies may be developed if we have a better un-

derstanding on the oncogenic pathways involved. In this thesis, we focused on the 

molecular function and clinical implication of mutations in IDH1 and EGFR, which 

are involved in the oncogenesis of two distinct subtypes of diffuse gliomas.

ONCOGENIC BIOLOGY OF IDH MUTATIONS

Tumors depend on their acquired genetic changes for growth and therefore these 

changes are good targets for treatment. Several large-scale sequencing studies on 

diffuse gliomas have identi�ed common genetic events that drive oncogenesis in the 

various glioma subtypes. One of the most common genetic changes in diffuse low grade 

gliomas (LGG) involves the IDH1 gene. Mutations in IDH1 (or similar mutations in 

IDH2) belong to the earliest genetic changes in LGGs and they are almost always clonal 

(i.e. present in all tumor cells). Mutations in IDH1 or IDH2 alter the normal function 

of these proteins and result in an enzyme with a novel activity whereby D2HG is 

produced. Patients with IDH-mutated gliomas have a better prognosis and bene�t more 

from chemotherapy/radiation therapy than patients with IDH wildtype gliomas [1, 2].

Since mutations in IDH genes are amongst the most common identi�ed in LGGs, and 

because of their clonality and mutation-speci�c enzymatic activity, they are considered 

a good target for therapy. Indeed, inhibitors targeting the mutant-speci�c activity have 

been developed and these are currently being tested for clinical activity. Although 

promising clinical responses have been reported in acute myeloid leukemia (AML) 

patients, the clinical bene�t for glioma patients has thus-far been limited [3-5], though 

the �eld is still awaiting reports on the clinical trials. The response to IDH inhibitors 

in AML patients is also remarkable considering the fact that mutations in AML are 

most-often subclonal, indicating that the tumor was not dependent on the mutation for 

initial growth. Additional research into the molecular mechanisms affected by mutant 

IDH1 and IDH2 therefore is required. However, this research is hampered because 

there are only few preclinical model systems of IDH-mutated gliomas.

In this thesis, we have described the generation of two model systems for IDH-mutated 

gliomas. In Chapter 2 we report on an in vivo transgenic zebra�sh model system for 

IDH1 mutations with CNS-speci�c expression at the early stage of the embryonic 

development. Although the D2HG level was signi�cantly increased, our zebra�sh re-

mained healthy and no tumors were formed in our models, also not in a Tp53 mutant 
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background. Although other transgenic model systems for Idh mutations (mice and 

drosophila) developed phenotypes (brain hemorrhage or wing expansion defects), 

thusfar no gliomas were identi�ed in any of the in vivo animal model systems [6, 7]. 

This absence suggests that IDH mutations alone are insuf�cient to initiate glioma 

formation. However, expression of mutant IDH1 in the subventricular zone did result 

in precancerous subventricular nodules, which suggests involvement of mutant IDH 

at the early stages of tumor development [8]. The absence of full blown tumors is in 

contrast to AML where hematopoietic expression of IDH mutations alone is suf�cient 

to initiate leukemia in several mouse models and mutant IDH is involved in maintain-

ing the malignancies [9-12].

There are several possibilities as to why no gliomas are formed in the in-vivo model 

systems. Perhaps additional genetic changes should be incorporated including (a 

combination of) mutations in TP53, ATRX and/or other, less-common, mutations. 

Alternatively, the model systems created to-date did not target the correct cell of origin 

for gliomas. In this case, alternative promoters should be used to drive expression of 

mutant IDH.

In Chapter 3 we report on establishing short term cultures of LGGs and show that 

these cultures retain mutant tumor cells and other driver mutations (albeit at a lower 

VAF compared to the VAF in the original tumor) and therefore may offer an in vitro 

assay to study downstream pathway alterations and to determine the ef�cacy of (new) 

therapeutics. As only very few IDH-mutated primary tumor lines have been estab-

lished to date, and those that have contain many more genetic changes and may even 

no longer be dependent on the mutation for growth, our assay is a welcome addition 

to study LGGs. Apart from primary patient-derived lines [13], other options to create 

in vitro model systems include the creation of tumor models using human-induced 

pluripotent stem cells (HiPSCs) by transforming neuro progenitor cells (NPCs) [14].

The importance of further examining the molecular pathways affected by IDH1 muta-

tions is shown in Chapter 4 where we identify a novel pathway that is inhibited by 

mutant IDH1. Our results demonstrate that MUL1 is a novel binding partner of IDH1 

and its function in activating NF-kB is inhibited in IDH1-mutated cells, ultimately 

leading to less sensitivity to TNFα-induced apoptosis. The data described in this chap-

ter can help understand gliomagenesis and identify novel targets for treatment in IDH 

mutant gliomas.

Generation of proper model systems is important as it will help understand clinical 

responses to IDH inhibitors. For example, IDH inhibitors initially showed prominent 
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ef�cacy in inhibiting tumorigenic properties of different cancer cell lines with IDH 

mutations [15-17] in vitro and in vivo, though some of the more recent studies failed to 

con�rm this observation [16, 18]. Other therapies for IDH-mutated tumors can also be 

further explored in these model systems. For example, Sulkowski et al. showed that the 

IDH mutation-induced D2HG-dependent de�ciency in DNA homologous recombina-

tion, results in sensitivity to PARP inhibitor treatment [19]. Alternatively, IDH-mutant 

cells are highly dependent on the level of NAD+ and inhibiting the NAD+ salvage 

pathway resulted in cytotoxicity of IDH-mutant cells [18].

It should also be noted that inhibiting D2HG production of IDH mutation may pose 

a risk to patients. For example, IDH-mutated gliomas are more sensitive to chemo-

therapy and radiotherapy due to impaired DNA repair system[17, 20]. As such, inhibit-

ing mutant IDH activity may actually antagonize chemotherapy ef�cacy. These data 

demonstrate that further research to better understand the biology of IDH mutations 

in gliomas is required.

The overall results of the randomized phase III European Organization for Research 

and Treatment (EORTC) 22033-26033 clinical trial did not show differences in clinical 

ef�cacy between radiotherapy (RT) vs temozolomide (TMZ) [21]. In Chapter 7, we 

sub-grouped LGGs from the EORTC22033-26033 clinical trial into previously de�ned 

intrinsic glioma subtypes (IGS) using gene expression pro�ling. We have con�rmed 

the prognostic value of IGS. LGG assigned to IGS-9 (most were IDH-mutated with 

1p19q codeletion) bene�ted more from RT than from TMZ whereas this bene�t was 

not observed in IGS-17 (most were IDH-mutated with intact 1p19q). However, we 

did not identify predictive markers for response to treatment and it is of note that the 

follow-up time was limited.

ONCOGENIC BIOLOGY OF MUTATIONS IN EGFR

Activating mutations in EGFR have been identi�ed in various cancer types. Interest-

ingly, different mutations in this gene are found in different types of cancer. For ex-

ample, EGFRvIII is frequently identi�ed in GBMs whereas over 40% of non-small cell 

lung cancer (NSCLC) patients with EGFR mutations carry the EGFR L858R mutation. 

Both EGFRvIII and EGFR L858R result in a constitutively active form of EGFR, which 

activates signaling pathways involved in cell proliferation, differentiation and survival. 

It should be noted that common EGFR mutations in NSCLC are mainly within the 

tyrosine kinase domain, whereas common EGFR mutations in GBMs are mainly in 

the extracellular domain of the receptor. Importantly, EGFR has been considered as a 
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good therapeutic target for EGFR-mutated GBMs as preclinical models demonstrated 

sustained dependency on the mutation [22, 23]. However, and in marked contrast to 

EGFR-mutated pulmonary adenocarcinoma, inhibiting EGFR phosphorylation by 

tyrosine kinase inhibitors (TKIs) did not decrease tumor growth nor improve survival, 

despite the fact the EGFR phosphorylation was effectively inhibited, also in patients 

(at least for ge�tinib) [24-28]. This suggests that an additional oncogenic function 

of EGFR is required for tumor growth in gliomas. In this thesis, we �rst examined 

whether EGFR remains a target for therapy in recurrent GBMs. In Chapter 6, we 

show that EGFR ampli�cation in the majority (85%) of the primary GBMs is retained 

at recurrence. However, only about 50% of EGFRvIII-positive primary GBMs retained 

EGFRvIII expression at recurrence. Therefore, care should be taken in using EGFRvIII 

as target as its status may change [29]. In Chapter 5, we have also further examined 

EGFR and its signaling pathway to understand the differences in treatment response 

between gliomas and pulmonary adenocarcinomas. We have identi�ed mutant-speci�c 

binding partners for different EGFR mutations (EGFRvIII and EGFR L858R), which 

each activated distinct downstream pathways.

In the future, further research into the molecular pathways affected by EGFR is re-

quired to understand the lack of treatment response to EGFR TKIs of glioma patients. 

The proteins and pathways identi�ed in Chapter 5 may serve as a starting point to 

provide new insights for treatment development. Apart from the role of EGFR in signal 

transduction, several studies have reported a role of EGFR in the nucleus, where it di-

rectly binds to DNA and induces transcription of various genes [30-32]. Indeed, several 

of the mutation-speci�c EGFR-binding partners have a presumed role in the nucleus. 

This role may be mutation speci�c as EGFRvIII reportedly has a higher presence in the 

nucleus than EGFR L858R [33]. Therefore, future research should also include nuclear 

EGFR as potential treatment target in gliomas.
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SUMMARY

Diffuse gliomas are the most frequent malignant brain tumors in adults, with an 

incidence of ~ 5 per 100 000 persons in United States each year. With the WHO 

2016 classi�cation, diffuse gliomas are grouped into astrocytomas (WHO grade II and 

grade III), oligodendrogliomas (grade II and III) and glioblastomas (grade IV) based 

on presence of speci�c molecular changes (e.g. isocitrate dehydrogenase 1/2 (IDH1/2) 

mutations) and histological appearance. Current treatments for diffuse glioma patients 

include surgical resection followed by radiotherapy alone or in combination with 

chemotherapy. However, progression almost always occurs and most patients eventu-

ally die from the disease. To improve the clinical outcome of glioma patients, there 

is considerable need for novel treatment options. This requires both development of 

appropriate model systems and a better understanding of the molecular pathways 

affected by driver mutations within different glioma subgroups. In this thesis we there-

fore describe two novel model systems and analyzed in detail the effects of IDH1 and 

EGFR mutations in glioma.

In Chapter 2, we describe the generation of a zebra�sh model system for IDH1-

mutated gliomas. We have generated over ten different transgenic zebra�sh models 

that expressed IDH1 mutants under the control of various CNS-speci�c promoters. A 

signi�cant increase in the level of D2HG was observed in all transgenic lines express-

ing IDH1R132C or IDH1R132H and the elevated D2HG levels could be lowered by treat-

ment of the transgenic zebra�sh with an inhibitor of mutant IDH1 activity. However, 

despite increased levels of D2HG we did not identify a strong phenotype as previously 

described in other in vivo IDH-mutated model systems (e.g. brain hemorrhage in the 

mouse model or defect wing expansion in the drosophila model). No tumor was ob-

served in our transgenic zebra�sh models nor CNS-speci�c tumors when backcrossing 

with tp53-mutant �sh. Therefore, our study suggested that IDH1 mutation alone is not 

suf�cient to promote tumorigenesis. A different model system for IDH mutated tumors 

is described in Chapter 3, where we have established short-term cultures of primary 

IDH-mutated gliomas, including those with 1p19q co-deletion. Despite a rapid reduc-

tion in the number of viable tumor cells, we were able to show that that inhibiting 

mutant IDH activity does not affect the number or viability of tumor cells. These data 

are important as they caution the clinical ef�cacy of these inhibitors.

Studying the molecular pathways affected by driver genes may lead to the identi�ca-

tion of novel treatment targets. In Chapters 4 and 5, we therefore studied in detail the 

molecular pathways affected by mutant IDH1 or EGFR. In Chapter 4, we demonstrated 

Mul1 is a novel binding partner of both wildtype and mutant IDH1 and its role in regu-
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lating the NF-ᴋB pathway is inhibited in IDH1R132H-cells. This deregulation may explain 

why IDH-mutated glioma remain proliferating and suggest MUL1 may be a target for 

treatment in IDH-mutated gliomas. In Chapter 5, we aimed to understand why target-

ing EGFR in pulmonary adenocarcinomas provided clinical bene�t whilst targeting in 

GBMs has no effect. We made different, tumor-speci�c, EGFR mutation constructs and 

identi�ed mutation-speci�c binding partners. This differential binding between EGFR 

and other proteins likely results in differential activation of downstream pathways 

and cell migration. Our observations that each mutation activates unique pathways 

may help explain the disappointing results from clinical trials in GBM patients and 

argue for the development of mutation speci�c inhibitors. In Chapter 6 we studied 

the stability of speci�c mutations in EGFR. This is important as speci�c mutations 

function as treatment targets. We show ~ half of patients expressing EGFRvIII, an 

in-frame deletion of exons 2-7, lost the mutation at tumor recurrence. Therefore our 

results caution the use of treatments targeting EGFRvIII at tumor progression when 

using molecular data from the primary tumor.

In Chapter 7, we grouped patients from the European Organization for Research 

and Treatment of Cancer (EORTC) 22033-26033 clinical trial into intrinsic glioma 

subtypes (IGS), molecular subtypes based on gene expression pro�le. We showed that 

IGS are prognostic for progression free survival but did not �nd additional markers 

associated with survival or treatment response.

In summary, in this thesis, we describe both in vitro and in vivo model systems for 

IDH-mutated gliomas and describe novel mutation-speci�c functional consequences of 

both IDH1 and EGFR. Our data will help identify novel treatment options for glioma 

patients and will allow selection of patients that are responsive to treatment.
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SAMENVATTING

Diffuse gliomen zijn de meest voorkomende vorm van kwaadaardige hersentumoren 

bij volwassenen, met een incidentie van ongeveer 5 per 100 000 personen per jaar. 

Diffuse gliomen worden, volgens de WHO 2016 classi�catie van hersentumoren, on-

derverdeeld in astrocytomen (graad II en III), oligodendrogliomen (graad II en III) en 

glioblastomen (graad IV). Deze indeling wordt gemaakt op basis van de aanwezigheid 

van speci�eke moleculaire veranderingen (b.v. mutaties in de isocitraat dehydrogenase 

1 of 2 genen [IDH1/2]) en histologische kenmerken. De standaardbehandeling van gli-

omen is een chirurgische resectie gevolgd door radiotherapie, al dan niet gecombineerd 

met chemotherapie. Echter, na verloop van tijd treedt altijd progressie op en de meeste 

patiënten overlijden uiteindelijk ook aan de ziekte. Vanwege de ernst van de ziekte 

is er een grote behoefte aan nieuwe behandelmogelijkheden. Dit vereist zowel ont-

wikkeling van betere wetenschappelijke modelsystemen als een uitgebreidere kennis 

van de moleculaire processen in de verschillende glioom subtypen. In dit proefschrift 

beschrijven we twee nieuwe modelsystemen en analyseren we in detail de effecten van 

IDH1 en EGFR mutaties in gliomen.

In hoofdstuk 2 beschrijven we een nieuw modelsysteem in zebravissen voor gliomen met 

een IDH1 mutatie. Hiervoor zijn in totaal meer dan tien verschillende lijnen gemaakt, 

allen met een net iets andere variant van het IDH1 gen (of een verschillende promoter). 

In alle lijnen die IDH1R132C of IDH1R132H tot expressie brachten vonden we een verhoogde 

concentratie van het D2HG metaboliet. Deze verhoging wordt ook in patiënten waar-

genomen en kon effectief verlaagd worden door het behandelen van de zebravissen met 

een IDH remmer. We vonden geen aanwijzingen voor het ontstaan van tumoren in onze 

transgene zebravissen (of andere fenotypische veranderingen), ook niet na kruising met 

TP53 gemuteerde zebravissen. Hiermee toonden we aan dat een IDH1 mutatie alleen (of 

in combinatie met TP53) niet voldoende is voor het ontstaan van tumoren. In hoofdstuk 

3 beschrijven we een ander modelsysteem voor IDH gemuteerde gliomen. Bij dit systeem 

werden tumorcellen direct na de operatie voor enige dagen tot enkele weken in leven ge-

houden in celkweek. Deze kweken werden geinitieerd voor zowel astrocytaire als oligoden-

drogliale tumoren (i.einclusief gliomen met een co-deletie van chromosomale armen 1p en 

19q). Deze korte-termijn kweken zijn belangrijk omdat er nagenoeg geen IDH-gemuteerde 

glioom cellijnen beschikbaar zijn en cellijnen waarbij de tumor een codeletie heeft van de 

1p en 19q chromosomale armen zijn in het geheel (nog) niet beschreven. In ons modelsys-

teem konden we aantonen het remmen van de mutant activiteit van IDH geen invloed had 

op de levensvatbaarheid van de tumorcellen. Dit is een belangrijke bevinding, omdat het 

derhalve onzeker is of IDH remmers enig klinisch effect kunnen bewerkstelligen.
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Het ontrafelen van het effect van genmutaties is een belangrijk onderdeel in de zoek-

tocht naar nieuwe behandelmogelijkheden. In hoofdstuk 4 en 5 hebben we daarom 

de invloed van IDH1 en EGFR mutaties op de cellulaire signaaltransductie cascades 

onderzocht. In hoofdstuk 4 tonen we aan dat Mul1 een bindingspartner is van zowel 

wildtype als gemuteerd IDH1. Tevens toonden we aan dat de regulerende rol van MUL1 

in de NF-ᴋB signaaltransductiecascade wordt geremd in cellen met een IDH1R132H 

mutatie. Deze deregulering kan verklaart mogelijk waarom IDH-gemuteerde gliomen 

ongeremd prolifereren en dat MUL1 potentieel een aangrijpingspunt zou kunnen 

vormen voor behandeling.

In hoofdstuk 5 hebben we onderzoek gedaan naar het onderliggende mechanisme 

waarom remming van EGFR in longcarcinomen een goed klinisch effect heeft, terwijl 

behandeling met dezelfde middelen bij EGFR gemuteerde glioblastomen geen effect 

heeft. Interessant gegeven is dat longtumoren en gliomen verschillende typen mutaties 

hebben in het EGFR gen, en het is mogelijk dat hierdoor verschillen in signaaltransductie 

cascades ontstaan. Om dit te onderzoeken hebben we verschillende EGFR constructen 

gegenereerd met de frequent voorkomende genmutaties zowel van longcarcinomen als 

van glioblastomen. Het blijkt dat elke mutatie zijn eigen, mutatie-speci�eke, bindingspart-

ners heeft. Vervolgens toonden we aan dat deze verschillende bindingspartners leiden tot 

differentiële activering van signaaltransductie cascades. Deze bevindingen kunnen de 

teleurstellende trialresultaten van EGFR remmers bij glioblastomen verklaren en zou 

kunnen betekenen dat elke mutatie zijn eigen speci�eke remmer nodig heeft. In hoofd-

stuk 6 onderzochten we de stabiliteit van speci�eke EGFR mutaties in glioblastomen. We 

vonden dat bij ongeveer de helft van de patiënten met expressie van EGFRvIII (de meest 

voorkomende mutatie in EGFR in hersentumor patiënten) deze mutatie niet meer aan-

wezig is in de recidief tumor. Omdat de EGFRvIII status van de tumor kan veranderen is 

voorzichtigheid geboden bij een gerichte behandeling tegen EGFRvIII.

In hoofdstuk 7 hebben we patiënten uit de European Organization for Research and 

Treatment of Cancer (EORTC) 22033-26033 klinische trial gekarakteriseerd op basis 

van RNA expressie. We hebben aangetoond dat deze indeling op basis van genexpres-

sie gecorreleerd is met progressievrije overleving en dus dat deze indeling gebruikt kan 

worden om de prognose van de patiënt te bepalen.

Samenvattend beschrijven we in dit proefschrift zowel in vitro als in vivo modelsys-

temen voor IDH1-gemuteerde gliomen en beschrijven mutatie-speci�eke, functionele 

gevolgen van zowel IDH1 als EGFR mutaties. Onze bevindingen helpen bij het identi-

�ceren van nieuwe behandelmogelijkheden voor gliomen en geven meer inzicht in de 

selectie van patiënten voor de juiste behandeling.
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弥漫性神经胶质瘤是一种成人中最常见的恶性脑瘤, 美国年发病率约5人/10万人
口。基于特定的分子变化 （例如异柠檬酸脱氢酶1或2的基因突变）和病理切片特
征，2016年的世界卫生组织（WHO）分类方案将弥漫性神经胶质瘤分为星型细胞瘤 
（二级和三级），少枝细胞瘤（二级和三级）和胶质母细胞瘤（简称GBM，四级）
。

目前弥漫性神经胶质瘤的治疗以手术切除为主，术后配合以放疗或化疗，或放化疗
结合。然而，随着病情恶化，患者生存率极低。为了提高神经胶质瘤患者的生存
率，我们必须寻找新的治疗方法。这需要为不同亚型的神经胶质瘤研发合适的模型
系统，以及更好的了解驱动基因突变影响的分子通路。本论文中描述了两个我们所
构建的新的模型系统，以及深入的研究了异柠檬酸脱氢酶1（简称IDH1）和表皮生长
因子受体（简称EGFR）基因突变在神经胶质瘤成瘤过程中的功能。

在第二章中，我们描述了为带有IDH1突变的神经胶质瘤所构建的斑马鱼模型系统。
我们构建了十余种由各类神经中枢系统特异性转录因子所调控的不同IDH1基因突变
的转基因斑马鱼模型。D-2 -羟基类固醇（简称D2HG）在所有表达IDH1R132C 突变
的斑马鱼模型中有明显的升高，并且升高的D2HG可被IDH1抑制剂降低。然而，除
了D2HG的升高，我们并未发现其他带有IDH突变的活体动物模型中描述过的表型（
例如老鼠模型中的脑出血，或者果蝇模型中的翅膀伸展缺陷）。我们的斑马鱼模型
中并未发现任何肿瘤，甚至与带有tp53突变的斑鱼杂交后也没有产生中枢神经系统
类的肿瘤。因此我们认为单有IDH1基因突变不足以促使神经胶质瘤的形成。

第三章描述了我们为IDH1突变的肿瘤所构建的体外模型，即短期原代体外培养的神
经胶质瘤，这当中还包含了带有1p19q co-deletion的胶质瘤。尽管体外培养引起存
活的肿瘤细胞数量急剧下降，我们发现IDH1抑制剂能有效抑制IDH1的癌变酶活性，
同时并不影响肿瘤细胞的生长。我们的研究结果建议进行IDH1抑制剂的临床测试需
谨慎。

研究驱动基因突变影响的分子通路对于寻找新型治疗方法起着重要的作用。IDH1和
EGFR突变是两个不同弥漫性胶质瘤亚型的驱动基因。因此，在第四章和第五章，
我们深入研究了被IDH1和EGFR基因突变影响的分子通路。在第四章中我们新发现
Mul1不仅是IDH1野生型和突变型的结合蛋白，并且，Mul1调控NF-ᴋB 通路的功能
在IDH1R132H突变的细胞中受阻。这个发现可以解释为何神经胶质瘤细胞可以不受
控制的生长。我们因此也建议Mul1可以在未来作为治疗IDH1突变的神经胶质瘤的靶
点。在第五章中，我们旨在研究为何肺癌中EGFR靶向疗法有很好的临床效果而在胶
质母细胞瘤中却没有任何疗效。我们做了不同的肿瘤特异性EGFR突变的质粒，找到
了突变特异性的结合蛋白。不同EGFR突变型与不同的蛋白结合反应，最终激活了不
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同的下游信号通路引起了细胞增值和迁移。我们的研究结果可以帮助解释EGFR靶向
疗法的临床测试在胶质母细胞瘤患者中的失败，同时我们的结果建议研发具有EGFR
突变特异性的抑制剂作以为新的靶向疗法。

在第六章中，我们研究了EGFR突变在肿瘤原发和复发时的状态。这一研究对于靶向
疗法有着重要意义。我们的数据显示近一半带有EGFRvIII突变的胶质母细胞瘤患者
在肿瘤复发时失去了EGFRvIII突变。由于靶向疗法是基于原发肿瘤的分子状态而决定
的，因此带有EGFRvIII的患者在肿瘤复发的时候需谨慎选择靶向疗法。

第七章中，我们将欧洲癌症治疗研究组织（EORTC）22033-26033 临床测试中的病
人基于基因表达的简况分组到本征胶质瘤亚型（IGS）中。我们发现IGS有评估预后
的价值。但是我们并未找到因放化疗提高存活时间的分子标志物。

总的来说，在这篇论文里我们描述了带有神经胶质瘤IDH突变的体内和体外的模型系
统，并描述了IDH1和EGFR功能上的突变特异性。我们的发现可以帮助神经胶质瘤患
者寻找新的潜在靶向治疗方案，也可以为携带不同基因突变的病人寻找更有效的疗
法。
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