112 research outputs found

    Cas9-triggered chain ablation of cas9 as a gene drive brake

    Get PDF
    With the advent of clustered, regularly interspaced, short palindromic repeats (CRISPR)–CRISPR-associated protein 9 (Cas9) technology, researchers can construct gene drives that can bias the inheritance of edited alleles to alter entire populations. As demonstrated with the mutagenic chain reaction in Drosophila4, the CRISPR-Cas9 system can propagate genomic modification together with the genome-editing machinery itself. Although gene drives might have the potential to control insect-borne diseases and agricultural pests, substantial concerns have been raised over unanticipated ecological consequences as a result of drive use. Here we report the development of a potential Cas9-based gene drive 'brake' that remains inert in a wild-type genome but is activated by Cas9 to both cleave the genomic cas9 sequence and to convert an incoming cas9 allele into a brake. This means that the propagation of the brake is favored in a cas9-carrying population

    Modulating signaling networks by CRISPR/Cas9-mediated transposable element insertion

    Get PDF
    In a recent past, transposable elements (TEs) were referred to as selfish genetic components only capable of copying themselves with the aim of increasing the odds of being inherited. Nonetheless, TEs have been initially proposed as positive control elements acting in synergy with the host. Nowadays, it is well known that TE movement into host genome comprises an important evolutionary mechanism capable of increasing the adaptive fitness. As insights into TE functioning are increasing day to day, the manipulation of transposition has raised an interesting possibility of setting the host functions, although the lack of appropriate genome engineering tools has unpaved it. Fortunately, the emergence of genome editing technologies based on programmable nucleases, and especially the arrival of a multipurpose RNA-guided Cas9 endonuclease system, has made it possible to reconsider this challenge. For such purpose, a particular type of transposons referred to as miniature inverted-repeat transposable elements (MITEs) has shown a series of interesting characteristics for designing functional drivers. Here, recent insights into MITE elements and versatile RNA-guided CRISPR/Cas9 genome engineering system are given to understand how to deploy the potential of TEs for control of the host transcriptional activity.Fil: Vaschetto, Luis Maria Benjamin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Cátedra de Diversidad Animal I; Argentin

    Multidimensional chemical control of CRISPR–Cas9

    Get PDF
    Cas9-based technologies have transformed genome engineering and the interrogation of genomic functions, but methods to control such technologies across numerous dimensions-including dose, time, specificity, and mutually exclusive modulation of multiple genes-are still lacking. We conferred such multidimensional controls to diverse Cas9 systems by leveraging small-molecule-regulated protein degron domains. Application of our strategy to both Cas9-mediated genome editing and transcriptional activities opens new avenues for systematic genome interrogation

    Evaluating Gene Drive Approaches for Public Benefit

    Get PDF
    Gene drive approaches—those which bias inheritance of a genetic element in a population of sexually reproducing organisms—have the potential to provide important public benefits. The spread of selected genetic elements in wild populations of organisms may help address certain challenges, such as transmission of vector-borne human and animal diseases and biodiversity loss due to invasive animals. Adapting various naturally occurring gene drive mechanisms to these aims is a long-standing research area, and recent advances in genetics have made engineering gene drive systems significantly more technically feasible. Gene drive approaches would act through changes in natural environments, thus robust methods to evaluate potential research and use are important. Despite the fact that gene drive approaches build on existing paradigms, such as genetic modification of organisms and conventional biological control, there are material challenges to their evaluation. One challenge is the inherent complexity of ecosystems, which makes precise prediction of changes to the environment difficult. For gene drive approaches that are expected to spread spatially and/or persist temporally, responding to this difficulty with the typical stepwise increases in the scale of studies may not be straightforward after studies begin in the natural environment. A related challenge is that study or use of a gene drive approach may have implications for communities beyond the location of introduction, depending on the spatial spread and persistence of the approach and the population biology of the target organism. This poses a particular governance challenge when spread across national borders is plausible. Finally, community engagement is an important element of responsible research and governance, but effective community engagement for gene drive approaches requires addressing complexity and uncertainty and supporting representative participation in decision making. These challenges are not confronted in a void. Existing frameworks, processes, and institutions provide a basis for effective evaluation of gene drive approaches for public benefit. Although engineered gene drive approaches are relatively new, the necessities of making decisions despite uncertainty and governing actions with potential implications for shared environments are well established. There are methodologies to identify potential harms and assess risks when there is limited experience to draw upon, and these methodologies have been applied in similar contexts. There are also laws, policies, treaties, agreements, and institutions in place across many jurisdictions that support national and international decision making regarding genetically modified organisms and the potential applications of gene drive approaches, such as public health and biodiversity conservation. Community engagement is an established component of many decision-making processes, and related experience and conceptual frameworks can inform engagement by researchers. The existence of frameworks, processes, and institutions provides an important foundation for evaluating gene drive approaches, but it is not sufficient by itself. They must be rigorously applied, which requires resources for risk assessment, research, and community engagement and diligent implementation by governance institutions. The continued evolution of the frameworks, processes, and institutions is important to adapt to the growing understanding of gene drive approaches. With appropriate resources and diligence, it will be possible to responsibly evaluate and make decisions on gene drive approaches for public benefit

    Identifying human diamine sensors for death related putrescine and cadaverine molecules

    Get PDF
    Pungent chemical compounds originating from decaying tissue are strong drivers of animal behavior. Two of the best-characterized death smell components are putrescine (PUT) and cadaverine (CAD), foul-smelling molecules produced by decarboxylation of amino acids during decomposition. These volatile polyamines act as 'necromones', triggering avoidance or attractive responses, which are fundamental for the survival of a wide range of species. The few studies that have attempted to identify the cognate receptors for these molecules have suggested the involvement of the seven-helix trace amine-associated receptors (TAARs), localized in the olfactory epithelium. However, very little is known about the precise chemosensory receptors that sense these compounds in the majority of organisms and the molecular basis of their interactions. In this work, we have used computational strategies to characterize the binding between PUT and CAD with the TAAR6 and TAAR8 human receptors. Sequence analysis, homology modeling, docking and molecular dynamics studies suggest a tandem of negatively charged aspartates in the binding pocket of these receptors which are likely to be involved in the recognition of these small biogenic diamines

    Free Radical Exposure Creates Paler Carotenoid-Based Ornaments: A Possible Interaction in the Expression of Black and Red Traits

    Get PDF
    Oxidative stress could be a key selective force shaping the expression of colored traits produced by the primary animal pigments in integuments: carotenoids and melanins. However, the impact of oxidative stress on melanic ornaments has only recently been explored, whereas its role in the expression of carotenoid-based traits is not fully understood. An interesting study case is that of those animal species simultaneously expressing both kinds of ornaments, such as the red-legged partridge (Alectoris rufa). In this bird, individuals exposed to an exogenous source of free radicals (diquat) during their development produced larger eumelanin-based (black) plumage traits than controls. Here, we show that the same red-legged partridges exposed to diquat simultaneously developed paler carotenoid-based ornaments (red beak and eye rings), and carried lower circulating carotenoid levels as well as lower levels of some lipids involved in carotenoid transport in the bloodstream (i.e., cholesterol). Moreover, partridges treated with a hormone that stimulates eumelanin production (i.e., alpha-melanocyte-stimulating hormone) also increased blood carotenoid levels, but this effect was not mirrored in the expression of carotenoid-based traits. The redness of carotenoid-based ornaments and the size of a conspicuous eumelanic trait (the black bib) were negatively correlated in control birds, suggesting a physiological trade-off during development. These findings contradict recent studies questioning the sensitivity of carotenoids to oxidative stress. Nonetheless, the impact of free radicals on plasma carotenoids seems to be partially mediated by changes in cholesterol metabolism, and not by direct carotenoid destruction/consumption. The results highlight the capacity of oxidative stress to create multiple phenotypes during development through differential effects on carotenoids and melanins, raising questions about evolutionary constraints involved in the production of multiple ornaments by the same organism

    Management of peripheral facial nerve palsy

    Get PDF
    Peripheral facial nerve palsy (FNP) may (secondary FNP) or may not have a detectable cause (Bell’s palsy). Three quarters of peripheral FNP are primary and one quarter secondary. The most prevalent causes of secondary FNP are systemic viral infections, trauma, surgery, diabetes, local infections, tumor, immunological disorders, or drugs. The diagnosis of FNP relies upon the presence of typical symptoms and signs, blood chemical investigations, cerebro-spinal-fluid-investigations, X-ray of the scull and mastoid, cerebral MRI, or nerve conduction studies. Bell’s palsy may be diagnosed after exclusion of all secondary causes, but causes of secondary FNP and Bell’s palsy may coexist. Treatment of secondary FNP is based on the therapy of the underlying disorder. Treatment of Bell’s palsy is controversial due to the lack of large, randomized, controlled, prospective studies. There are indications that steroids or antiviral agents are beneficial but also studies, which show no beneficial effect. Additional measures include eye protection, physiotherapy, acupuncture, botulinum toxin, or possibly surgery. Prognosis of Bell’s palsy is fair with complete recovery in about 80% of the cases, 15% experience some kind of permanent nerve damage and 5% remain with severe sequelae

    Pharmacology and therapeutic implications of current drugs for type 2 diabetes mellitus

    Get PDF
    Type 2 diabetes mellitus (T2DM) is a global epidemic that poses a major challenge to health-care systems. Improving metabolic control to approach normal glycaemia (where practical) greatly benefits long-term prognoses and justifies early, effective, sustained and safety-conscious intervention. Improvements in the understanding of the complex pathogenesis of T2DM have underpinned the development of glucose-lowering therapies with complementary mechanisms of action, which have expanded treatment options and facilitated individualized management strategies. Over the past decade, several new classes of glucose-lowering agents have been licensed, including glucagon-like peptide 1 receptor (GLP-1R) agonists, dipeptidyl peptidase 4 (DPP-4) inhibitors and sodium/glucose cotransporter 2 (SGLT2) inhibitors. These agents can be used individually or in combination with well-established treatments such as biguanides, sulfonylureas and thiazolidinediones. Although novel agents have potential advantages including low risk of hypoglycaemia and help with weight control, long-term safety has yet to be established. In this Review, we assess the pharmacokinetics, pharmacodynamics and safety profiles, including cardiovascular safety, of currently available therapies for management of hyperglycaemia in patients with T2DM within the context of disease pathogenesis and natural history. In addition, we briefly describe treatment algorithms for patients with T2DM and lessons from present therapies to inform the development of future therapies

    Core commitments for field trials of gene drive organisms

    Get PDF
    This is the author accepted manuscript. The final version is available from the American Association for the Advancement of Science via the DOI in this record Gene drive organisms (GDOs), whose genomes have been genetically engineered to spread a desired allele through a population, have the potential to transform the way societies address a wide range of daunting public health and environmental challenges. The development, testing, and release of GDOs, however, are complex and often controversial. A key challenge is to clarify the appropriate roles of developers and others actively engaged in work with GDOs in decision-making processes, and, in particular, how to establish partnerships with relevant authorities and other stakeholders. Several members of the gene drive community previously proposed safeguards for laboratory experiments with GDOs (1) that, in the absence of national or international guidelines, were considered essential for responsible laboratory work to proceed. Now, with GDO development advancing in laboratories (2–5), we envision similar safeguards for the potential next step: ecologically and/or genetically confined field trials to further assess the performance of GDOs. A GDO's propensity to spread necessitates well-developed criteria for field trials to assess its potential impacts (6). We, as a multidisciplinary group of GDO developers, ecologists, conservation biologists, and experts in social science, ethics, and policy, outline commitments below that we deem critical for responsible conduct of a field trial and to ensure that these technologies, if they are introduced, serve the public interest.British AcademyBritish Academ
    • …
    corecore