190 research outputs found

    Double Infection with Leishmania tropica and L. Major in an Hiv patient controlled with high doses of amphotericin B

    Get PDF
    We present a unique case of disseminated Leishmaniasis in an HIV patient. Two different Leishmania species were identified by genomic sequencing in both bone marrow and skin. The Leishmania infection could be suppressed but not cured, despite a high dose of amphotericin B of nearly 65 g over more than 6 years

    Toxoplasmosis in Transplant Recipients, Europe, 2010-2014

    Get PDF
    Transplantation activity is increasing, leading to a growing number of patients at risk for toxoplasmosis. We reviewed toxoplasmosis prevention practices, prevalence, and outcomes for hematopoietic stem cell transplant (HSCT) and solid organ transplant (SOT; heart, kidney, or liver) patients in Europe. We collected electronic data on the transplant population and prevention guidelines/regulations and clinical data on toxoplasmosis cases diagnosed during 2010-2014. Serologic pretransplant screening of allo-hematopoietic stem cell donors was performed in 80% of countries, screening of organ donors in 100%. SOT recipients were systematically screened in 6 countries. Targeted anti-Toxoplasma chemoprophylaxis was heterogeneous. A total of 87 toxoplasmosis cases were recorded (58 allo-HSCTs, 29 SOTs). The 6-month survival rate was lower among Toxoplasma-seropositive recipients and among allo-hematopoietic stem cell and liver recipients. Chemoprophylaxis improved outcomes for SOT recipients. Toxoplasmosis remains associated with high mortality rates among transplant recipients. Guidelines are urgently needed to standardize prophylactic regimens and optimize patient management

    Study of Leishmania pathogenesis in mice : experimental considerations

    Get PDF
    Although leishmaniases are endemic in 98 countries, they are still considered neglected tropical diseases. Leishmaniases are characterized by the emergence of new virulent and asymptomatic strains of Leishmania spp. and, as a consequence, by a very diverse clinical spectrum. To fight more efficiently these parasites, the mechanisms of host defense and of parasite virulence need to be thoroughly investigated. To this aim, animal models are widely used. However, the results obtained with these models are influenced by several experimental parameters, such as the mouse genetic background, parasite genotype, inoculation route/infection site, parasite dose and phlebotome saliva. In this review, we propose an update on their influence in the two main clinical forms of the disease: cutaneous and visceral leishmaniases

    Distinct Roles for Dectin-1 and TLR4 in the Pathogenesis of Aspergillus fumigatus Keratitis

    Get PDF
    Aspergillus species are a major worldwide cause of corneal ulcers, resulting in visual impairment and blindness in immunocompetent individuals. To enhance our understanding of the pathogenesis of Aspergillus keratitis, we developed a murine model in which red fluorescent protein (RFP)-expressing A. fumigatus (Af293.1RFP) conidia are injected into the corneal stroma, and disease progression and fungal survival are tracked over time. Using Mafia mice in which c-fms expressing macrophages and dendritic cells can be induced to undergo apoptosis, we demonstrated that the presence of resident corneal macrophages is essential for production of IL-1β and CXCL1/KC, and for recruitment of neutrophils and mononuclear cells into the corneal stroma. We found that β-glucan was highly expressed on germinating conidia and hyphae in the cornea stroma, and that both Dectin-1 and phospho-Syk were up-regulated in infected corneas. Additionally, we show that infected Dectin-1−/− corneas have impaired IL-1β and CXCL1/KC production, resulting in diminished cellular infiltration and fungal clearance compared with control mice, especially during infection with clinical isolates expressing high β-glucan. In contrast to Dectin 1−/− mice, cellular infiltration into infected TLR2−/−, TLR4−/−, and MD-2−/− mice corneas was unimpaired, indicating no role for these receptors in cell recruitment; however, fungal killing was significantly reduced in TLR4−/− mice, but not TLR2−/− or MD-2−/− mice. We also found that TRIF−/− and TIRAP−/− mice exhibited no fungal-killing defects, but that MyD88−/− and IL-1R1−/− mice were unable to regulate fungal growth. In conclusion, these data are consistent with a model in which β-glucan on A.fumigatus germinating conidia activates Dectin-1 on corneal macrophages to produce IL-1β, and CXCL1, which together with IL-1R1/MyD88-dependent activation, results in recruitment of neutrophils to the corneal stroma and TLR4-dependent fungal killing

    Distinct Roles for Dectin-1 and TLR4 in the Pathogenesis of Aspergillus fumigatus Keratitis

    Get PDF
    Aspergillus species are a major worldwide cause of corneal ulcers, resulting in visual impairment and blindness in immunocompetent individuals. To enhance our understanding of the pathogenesis of Aspergillus keratitis, we developed a murine model in which red fluorescent protein (RFP)-expressing A. fumigatus (Af293.1RFP) conidia are injected into the corneal stroma, and disease progression and fungal survival are tracked over time. Using Mafia mice in which c-fms expressing macrophages and dendritic cells can be induced to undergo apoptosis, we demonstrated that the presence of resident corneal macrophages is essential for production of IL-1β and CXCL1/KC, and for recruitment of neutrophils and mononuclear cells into the corneal stroma. We found that β-glucan was highly expressed on germinating conidia and hyphae in the cornea stroma, and that both Dectin-1 and phospho-Syk were up-regulated in infected corneas. Additionally, we show that infected Dectin-1−/− corneas have impaired IL-1β and CXCL1/KC production, resulting in diminished cellular infiltration and fungal clearance compared with control mice, especially during infection with clinical isolates expressing high β-glucan. In contrast to Dectin 1−/− mice, cellular infiltration into infected TLR2−/−, TLR4−/−, and MD-2−/− mice corneas was unimpaired, indicating no role for these receptors in cell recruitment; however, fungal killing was significantly reduced in TLR4−/− mice, but not TLR2−/− or MD-2−/− mice. We also found that TRIF−/− and TIRAP−/− mice exhibited no fungal-killing defects, but that MyD88−/− and IL-1R1−/− mice were unable to regulate fungal growth. In conclusion, these data are consistent with a model in which β-glucan on A.fumigatus germinating conidia activates Dectin-1 on corneal macrophages to produce IL-1β, and CXCL1, which together with IL-1R1/MyD88-dependent activation, results in recruitment of neutrophils to the corneal stroma and TLR4-dependent fungal killing

    Regulation of immunity during visceral Leishmania infection

    Get PDF
    Unicellular eukaryotes of the genus Leishmania are collectively responsible for a heterogeneous group of diseases known as leishmaniasis. The visceral form of leishmaniasis, caused by L. donovani or L. infantum, is a devastating condition, claiming 20,000 to 40,000 lives annually, with particular incidence in some of the poorest regions of the world. Immunity to Leishmania depends on the development of protective type I immune responses capable of activating infected phagocytes to kill intracellular amastigotes. However, despite the induction of protective responses, disease progresses due to a multitude of factors that impede an optimal response. These include the action of suppressive cytokines, exhaustion of specific T cells, loss of lymphoid tissue architecture and a defective humoral response. We will review how these responses are orchestrated during the course of infection, including both early and chronic stages, focusing on the spleen and the liver, which are the main target organs of visceral Leishmania in the host. A comprehensive understanding of the immune events that occur during visceral Leishmania infection is crucial for the implementation of immunotherapeutic approaches that complement the current anti-Leishmania chemotherapy and the development of effective vaccines to prevent disease.The research leading to these results has received funding from the European Community’s Seventh Framework Programme under grant agreement No.602773 (Project KINDRED). VR is supported by a post-doctoral fellowship granted by the KINDReD consortium. RS thanks the Foundation for Science and Technology (FCT) for an Investigator Grant (IF/00021/2014). This work was supported by grants to JE from ANR (LEISH-APO, France), Partenariat Hubert Curien (PHC) (program Volubilis, MA/11/262). JE acknowledges the support of the Canada Research Chair Program

    European candidaemia is characterised by notable differential epidemiology and susceptibility pattern: Results from the ECMM Candida III study.

    Get PDF
    The objectives of this study were to assess Candida spp. distribution and antifungal resistance of candidaemia across Europe. Isolates were collected as part of the third ECMM Candida European multicentre observational study, conducted from 01 to 07-07-2018 to 31-03-2022. Each centre (maximum number/country determined by population size) included ∼10 consecutive cases. Isolates were referred to central laboratories and identified by morphology and MALDI-TOF, supplemented by ITS-sequencing when needed. EUCAST MICs were determined for five antifungals. fks sequencing was performed for echinocandin resistant isolates. The 399 isolates from 41 centres in 17 countries included C. albicans (47.1%), C. glabrata (22.3%), C. parapsilosis (15.0%), C. tropicalis (6.3%), C. dubliniensis and C. krusei (2.3% each) and other species (4.8%). Austria had the highest C. albicans proportion (77%), Czech Republic, France and UK the highest C. glabrata proportions (25-33%) while Italy and Turkey had the highest C. parapsilosis proportions (24-26%). All isolates were amphotericin B susceptible. Fluconazole resistance was found in 4% C. tropicalis, 12% C. glabrata (from six countries across Europe), 17% C. parapsilosis (from Greece, Italy, and Turkey) and 20% other Candida spp. Four isolates were anidulafungin and micafungin resistant/non-wild-type and five resistant to micafungin only. Three/3 and 2/5 of these were sequenced and harboured fks-alterations including a novel L657W in C. parapsilosis. The epidemiology varied among centres and countries. Acquired echinocandin resistance was rare but included differential susceptibility to anidulafungin and micafungin, and resistant C. parapsilosis. Fluconazole and voriconazole cross-resistance was common in C. glabrata and C. parapsilosis but with different geographical prevalence

    Environmental risk factors for Toxoplasma gondii infections and the impact of latent infections on allostatic load in residents of Central North Carolina

    Get PDF
    Abstract Background Toxoplasma gondii infection can be acquired through ingestion of infectious tissue cysts in undercooked meat or environmental oocysts excreted by cats. This cross-sectional study assessed environmental risk factors for T. gondii infections and an association between latent infections and a measure of physiologic dysregulation known as allostatic load. Methods Serum samples from 206 adults in the Durham-Chapel Hill, North Carolina area were tested for immunoglobulin (IgG) responses to T. gondii using commercial ELISA kits. Allostatic load was estimated as a sum of 15 serum biomarkers of metabolic, neuroendocrine and immune functions dichotomized at distribution-based cutoffs. Vegetated land cover within 500 m of residences was estimated using 1 m resolution data from US EPA’s EnviroAtlas. Results Handling soil with bare hands at least weekly and currently owning a cat were associated with 5.3 (95% confidence limits 1.4; 20.7) and 10.0 (2.0; 50.6) adjusted odds ratios (aOR) of T. gondii seropositivity, respectively. There was also a significant positive interaction effect of handling soil and owning cats on seropositivity. An interquartile range increase in weighted mean vegetated land cover within 500 m of residence was associated with 3.7 (1.5; 9.1) aOR of T. gondii seropositivity. Greater age and consumption of undercooked pork were other significant predictors of seropositivity. In turn, T. gondii seropositivity was associated with 61% (13%; 130%) greater adjusted mean allostatic load compared to seronegative individuals. In contrast, greater vegetated land cover around residence was associated with significantly reduced allostatic load in both seronegative (p < 0.0001) and seropositive (p = 0.004) individuals. Conclusions Residents of greener areas may be at a higher risk of acquiring T. gondii infections through inadvertent ingestion of soil contaminated with cat feces. T. gondii infections may partially offset health benefits of exposure to the natural living environment
    corecore