1,827 research outputs found
Impact of COVID-19 pandemic: increase in complicated upper respiratory tract infections requiring ENT surgery?
PURPOSE
This study investigates the impact of the COVID-19 pandemic on complicated upper respiratory tract infections requiring surgical intervention in a tertiary referral center. The aim is to understand the consequences of pandemic-related measures and their subsequent relaxation on the incidence and characteristics of upper respiratory tract infection-related complications.
METHODS
Patients who underwent surgery as a complication of upper respiratory tract infections between December 2014 to February 2023 were included. Demographic information, surgical procedures, microbiological findings, and clinical outcomes were assessed and analyzed comparing pre-pandemic, pandemic and post-pandemic groups.
RESULTS
321 patients were enrolled, including 105 patients (32.7%) in the pediatric population. Comparison of pre-pandemic (n = 210), pandemic (n = 46) and post-pandemic periods (n = 65) revealed a statistically significant increase in complicated otologic infections requiring surgical intervention in the post-pandemic period compared to the pandemic period (p value = 0.03). No statistically significant differences in other surgical procedures or demographic parameters were observed. A statistically significant increase in urgent ear surgery in the pediatric population between the pandemic and the post-pandemic period (p value = 0.02) was observed. Beta-hemolytic group A streptococcal infections showed a statistically significant increase in the post-pandemic period compared with the pandemic period (p value = 0.02).
CONCLUSIONS
Relaxation of COVID-19-related restrictions was associated with an increase of upper respiratory tract infection-related otologic infections requiring surgical intervention with an increasing rate of beta-hemolytic group A streptococcal infections. These findings highlight the importance of considering the impact of the pandemic on upper respiratory tract infection complications and adapting management strategies accordingly
Diagnostic accuracy of MRI and PET/CT for neck staging prior to salvage total laryngectomy
Aim: Lymph node (LN) metastases are associated with poor outcomes in patients with recurrent larynx squamous cell carcinoma (LSCC). Neck dissection (ND) is therefore commonly performed along with salvage total laryngectomy (STL). Here, we assess the rate of occult LN metastases and the diagnostic value of MRI and PET/CT for detecting them in recurrent LSCC.
Methods: This retrospective study included patients with recurrent LSCC after primary (chemo)radiotherapy [(C)RT] who were re-staged by MRI and/or PET/CT and treated with STL and ND between 2004 and 2019. The histopathology of ND samples was used as the reference standard.
Results: Forty-one patients were included. The prevalence of occult metastases in MRI-negative and PET/CT-negative neck nodes was between 3.2% and 6.1%. Negative predictive values of neck node re-staging were 93.9% for MRI, 96.8% for PET/CT, and 96.2% for MRI and PET/CT combined.
Conclusion: Both MRI and PET/CT afforded good negative predictive values for nodal staging in patients with recurrent LSCC after (C)RT prior to STL. In selected patients, these radiological modalities, particularly PET/CT, could help to avoid unnecessary surgery to the neck and its associated morbidity
Analysis of riboflavin/ultraviolet a corneal cross-linking by molecular spectroscopy
Corneal cross-linking (CXL) with riboflavin and ultraviolet A light is a therapeutic procedure to restore the mechanical stability of corneal tissue. The treatment method is applied to pathological tissue, such as keratoconus and induces the formation of new cross-links. At present, the molecular mechanisms of induced cross-linking are still not known exactly. In this study, we investigated molecular alterations within porcine cornea tissue after treatment with riboflavin and ultraviolet A light by surface enhanced Raman spectroscopy (SERS). For that purpose, after CXL treatment a thin silver layer was vapor-deposited onto cornea flaps. To explore molecular alterations induced by the photochemical process hierarchical cluster analysis (HCA) was used. The detailed analysis of SERS spectra reveals that there is no general change in collagen secondary structure while modifications on amino acid side chains are the most dominant outcome. The formation of secondary and aromatic amine groups as well as methylene and carbonyl groups were observed. Even though successful cross-linking could not be registered in all treated samples, Raman signals of newly formed chemical groups are already present in riboflavin only treated corneas
V-Proportion: a method based on the Voronoi diagram to study spatial relations in neuronal mosaics of the retina
The visual system plays a predominant role in the human perception. Although all components of the eye are important to perceive visual information, the retina is a fundamental part of the visual system. In this work we study the spatial relations between neuronal mosaics in the retina. These relations have shown its importance to investigate possible constraints or connectivities between different spatially colocalized populations of neurons, and to explain how visual information spreads along the layers before being sent to the brain. We introduce the V-Proportion, a method based on the Voronoi diagram to study possible spatial interactions between two neuronal mosaics. Results in simulations as well as in real data demonstrate the effectiveness of this method to detect spatial relations between neurons in different layers
Allergic Eosinophil-rich Inflammation Develops in Lungs and Airways of B Cell–deficient Mice
Immunoglobulins (Ig), particularly IgE, are believed to be crucially involved in the pathogenesis of asthma and, equally, in allergic models of the disease. To validate this paradigm we examined homozygous mutant C57BL/6 mice, which are B cell deficient, lacking all Ig. Mice were immunized intraperitoneally with 10 μg ovalbumin (OVA) plus alum, followed by daily (day 14–20) 30 min exposures to OVA aerosol (OVA/OVA group). Three control groups were run: OVA intraperitoneally plus saline (SAL) aerosol (OVA/SAL group); saline intraperitoneally plus saline aerosol; saline intraperitoneally plus OVA aerosol (n = 6–7). Lung and large airway tissues obtained 24 h after the last OVA or SAL exposure were examined by light microscopy and transmission electron microscopy (TEM). The Ig-deficient mice receiving OVA/ OVA treatment had swollen and discolored lungs and exhibited marked eosinophilia both in large airway subepithelial tissue (49.2 ± 12.0 cells/mm basement membrane [BM] versus OVA/ SAL control 1.2 ± 0.3 cells/mm BM; P <0.001), and perivascularly and peribronchially in the lung (49.3 ± 9.0 cells/unit area versus OVA/SAL control 2.6 ± 0.6 cells/unit area; P <0.001). The eosinophilia extended to the regional lymph nodes. TEM confirmed the subepithelial and perivascular localization of eosinophils. Mucus cells in large airway epithelium increased from 1.5 ± 0.8 (OVA/SAL mice) to 39.5 ± 5.7 cells/mm BM in OVA/OVA treated mice (P <0.001). OVA/SAL mice never differed from the other control groups. Corresponding experiments in wild-type mice (n = 6–7 in each group) showed qualitatively similar but less pronounced eosinophil and mucus cell changes. Macrophages and CD4+ T cells increased in lungs of all OVA/OVA-treated mice. Mast cell number did not differ but degranulation was detected only in OVA/OVA-treated wild-type mice. Immunization to OVA followed by OVA challenges thus cause eosinophil-rich inflammation in airways and lungs of mice without involvement of B cells and Ig
Genetic and phenotypic spectrum associated with IFIH1 gain-of-function
IFIH1 gain-of-function has been reported as a cause of a type I interferonopathy encompassing a spectrum of autoinflammatory phenotypes including Aicardi–Goutières syndrome and Singleton Merten syndrome. Ascertaining patients through a European and North American collaboration, we set out to describe the molecular, clinical and interferon status of a cohort of individuals with pathogenic heterozygous mutations in IFIH1. We identified 74 individuals from 51 families segregating a total of 27 likely pathogenic mutations in IFIH1. Ten adult individuals, 13.5% of all mutation carriers, were clinically asymptomatic (with seven of these aged over 50 years). All mutations were associated with enhanced type I interferon signaling, including six variants (22%) which were predicted as benign according to multiple in silico pathogenicity programs. The identified mutations cluster close to the ATP binding region of the protein. These data confirm variable expression and nonpenetrance as important characteristics of the IFIH1 genotype, a consistent association with enhanced type I interferon signaling, and a common mutational mechanism involving increased RNA binding affinity or decreased efficiency of ATP hydrolysis and filament disassembly rate
Constraints on CDM Extensions from the SPT-3G 2018 and Power Spectra
We present constraints on extensions to the CDM cosmological model
from measurements of the -mode polarization auto-power spectrum and the
temperature--mode cross-power spectrum of the cosmic microwave background
(CMB) made using 2018 SPT-3G data. The extensions considered vary the
primordial helium abundance, the effective number of relativistic degrees of
freedom, the sum of neutrino masses, the relativistic energy density and mass
of a sterile neutrino, and the mean spatial curvature. We do not find clear
evidence for any of these extensions, from either the SPT-3G 2018 dataset alone
or in combination with baryon acoustic oscillation and \textit{Planck} data.
None of these model extensions significantly relax the tension between
Hubble-constant, , constraints from the CMB and from distance-ladder
measurements using Cepheids and supernovae. The addition of the SPT-3G 2018
data to \textit{Planck} reduces the square-root of the determinants of the
parameter covariance matrices by factors of across these models,
signaling a substantial reduction in the allowed parameter volume. We also
explore CMB-based constraints on from combined SPT, \textit{Planck}, and
ACT DR4 datasets. While individual experiments see some indications of
different values between the , , and spectra, the combined
constraints are consistent between the three spectra. For the full
combined datasets, we report , which is the tightest constraint on
from CMB power spectra to date and in tension with the most
precise distance-ladder-based measurement of . The SPT-3G survey is
planned to continue through at least 2023, with existing maps of combined 2019
and 2020 data already having lower noise than the maps used in
this analysis.Comment: Submitted to PRD; 19 pages, 7 figure
Performance and characterization of the SPT-3G digital frequency-domain multiplexed readout system using an improved noise and crosstalk model
The third generation South Pole Telescope camera (SPT-3G) improves upon its predecessor (SPTpol) by an order of magnitude increase in detectors on the focal plane. The technology used to read out and control these detectors, digital frequency-domain multiplexing (DfMUX), is conceptually the same as used for SPTpol, but extended to accommodate more detectors. A nearly 5x expansion in the readout operating bandwidth has enabled the use of this large focal plane, and SPT-3G performance meets the forecasting targets relevant to its science objectives. However, the electrical dynamics of the higher-bandwidth readout differ from predictions based on models of the SPTpol system. To address this, we present an updated derivation for electrical crosstalk in higher-bandwidth DfMUX systems, and identify two previously uncharacterized contributions to readout noise. The updated crosstalk and noise models successfully describe the measured crosstalk and readout noise performance of SPT-3G, and suggest improvements to the readout system for future experiments using DfMUX, such as the LiteBIRD space telescope
- …