68 research outputs found

    The Long-Term Effects of Developmental Hypoxia on Cardiac Mitochondrial Function in Snapping Turtles

    Get PDF
    It is well established that adult vertebrates acclimatizing to hypoxic environments undergo mitochondrial remodeling to enhance oxygen delivery, maintain ATP, and limit oxidative stress. However, many vertebrates also encounter oxygen deprivation during embryonic development. The effects of developmental hypoxia on mitochondrial function are likely to be more profound, because environmental stress during early life can permanently alter cellular physiology and morphology. To this end, we investigated the long-term effects of developmental hypoxia on mitochondrial function in a species that regularly encounters hypoxia during development—the common snapping turtle (Chelydra serpentina). Turtle eggs were incubated in 21% or 10% oxygen from 20% of embryonic development until hatching, and both cohorts were subsequently reared in 21% oxygen for 8 months. Ventricular mitochondria were isolated, and mitochondrial respiration and reactive oxygen species (ROS) production were measured with a microrespirometer. Compared to normoxic controls, juvenile turtles from hypoxic incubations had lower Leak respiration, higher P:O ratios, and reduced rates of ROS production. Interestingly, these same attributes occur in adult vertebrates that acclimatize to hypoxia. We speculate that these adjustments might improve mitochondrial hypoxia tolerance, which would be beneficial for turtles during breath-hold diving and overwintering in anoxic environments

    The Long-Term Effects of Developmental Hypoxia on Cardiac Mitochondrial Function in Snapping Turtles

    Get PDF
    From Frontiers via Jisc Publications RouterHistory: collection 2021, received 2021-04-01, accepted 2021-06-03, epub 2021-06-28Publication status: PublishedIt is well established that adult vertebrates acclimatizing to hypoxic environments undergo mitochondrial remodeling to enhance oxygen delivery, maintain ATP, and limit oxidative stress. However, many vertebrates also encounter oxygen deprivation during embryonic development. The effects of developmental hypoxia on mitochondrial function are likely to be more profound, because environmental stress during early life can permanently alter cellular physiology and morphology. To this end, we investigated the long-term effects of developmental hypoxia on mitochondrial function in a species that regularly encounters hypoxia during development—the common snapping turtle (Chelydra serpentina). Turtle eggs were incubated in 21% or 10% oxygen from 20% of embryonic development until hatching, and both cohorts were subsequently reared in 21% oxygen for 8 months. Ventricular mitochondria were isolated, and mitochondrial respiration and reactive oxygen species (ROS) production were measured with a microrespirometer. Compared to normoxic controls, juvenile turtles from hypoxic incubations had lower Leak respiration, higher P:O ratios, and reduced rates of ROS production. Interestingly, these same attributes occur in adult vertebrates that acclimatize to hypoxia. We speculate that these adjustments might improve mitochondrial hypoxia tolerance, which would be beneficial for turtles during breath-hold diving and overwintering in anoxic environments

    Hematopoiesis and immune reconstitution after CD19 directed chimeric antigen receptor T‐cells (CAR‐T): A comprehensive review on incidence, risk factors and current management

    Get PDF
    Impaired function of hematopoiesis after treatment with chimeric antigen T-cells (CAR-T) is a frequent finding and can interest a wide range of patients, regardless of age and underlying disease. Trilinear cytopenias, as well as hypogammaglobulinemia, B-cell aplasia, and T-cell impairment, can severely affect the infectious risk of CAR-T recipients, as well as their quality of life. In this review, we provide an overview of defects in hematopoiesis after CAR-T, starting with a summary of different definitions and thresholds. We then move to summarize the main pathogenetic mechanisms of cytopenias, and we offer insight into cytomorphological aspects, the role of clonal hematopoiesis, and the risk of secondary myeloid malignancies. Subsequently, we expose the major findings and reports on T-cell and B-cell quantitative and functional impairment after CAR-T. Finally, we provide an overview of current recommendations and leading experiences regarding the management of cytopenias and defective B- and T-cell function

    Cardiac mitochondrial function depends on BUD23 mediated ribosome programming.

    Get PDF
    Efficient mitochondrial function is required in tissues with high energy demand such as the heart, and mitochondrial dysfunction is associated with cardiovascular disease. Expression of mitochondrial proteins is tightly regulated in response to internal and external stimuli. Here we identify a novel mechanism regulating mitochondrial content and function, through BUD23-dependent ribosome generation. BUD23 was required for ribosome maturation, normal 18S/28S stoichiometry and modulated the translation of mitochondrial transcripts in human A549 cells. Deletion of Bud23 in murine cardiomyocytes reduced mitochondrial content and function, leading to severe cardiomyopathy and death. We discovered that BUD23 selectively promotes ribosomal interaction with low GC-content 5'UTRs. Taken together we identify a critical role for BUD23 in bioenergetics gene expression, by promoting efficient translation of mRNA transcripts with low 5'UTR GC content. BUD23 emerges as essential to mouse development, and to postnatal cardiac function

    The effects of smoking on whisker movements: a quantitative measure of exploratory behaviour in rodents

    Get PDF
    Nicotine, an important component of cigarette smoke, is a neurotransmitter that contributes to stress, depression and anxiety in smokers. In rodents, it increases anxiety and reduces exploratory behaviours. However, so far, the measurements of exploratory behaviour in rodents have only been semi-quantitative and lacking in sufficient detail to characterise the temporal effect of smoking cessation. As rodents, such as mice and rats, primarily use whiskers to explore their environment, we studied the effect of 3 months smoking with 1 and 2 weeks smoking cessation on whisker movements in mice, using high-speed video camera footage and image analysis. Both protraction and retraction whisker velocities were increased in smoking mice (p<0.001) and returned to normal following just one week of smoking cessation. In addition, locomotion speeds were decreased in smoking mice, and returned to normal following smoking cessation. Lung function was also impacted by smoking and remained impaired even following smoking cessation. We suggest that the increased whisker velocities in the smoking mice reflect reduced exploration and impeded tactile performance. The increase in whisker velocity with smoking, and its reduction following smoking cessation, also lends support to acetylcholine being involved in awareness, attention and alertness pathways. It also shows that smoking-induced behavioural changes can be reversed with smoking cessation, which may have implications for human smokers

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
    corecore