957 research outputs found

    Bile acid interactions with neurotransmitter transporters

    Get PDF
    Synthesized in the liver from cholesterol, the bile acids (BAs) primary role is emulsifying fats to facilitate their absorption. BAs can cross the blood-brain barrier (BBB) and be synthesized in the brain. Recent evidence suggests a role for BAs in the gut-brain signaling by modulating the activity of various neuronal receptors and transporters, including the dopamine transporter (DAT). In this study, we investigated the effects of BAs and their relationship with substrates in three transporters of the solute carrier 6 family. The exposure to obeticholic acid (OCA), a semi-synthetic BA, elicits an inward current (I-BA) in the DAT, the GABA transporter 1 (GAT1), and the glycine transporter 1 (GlyT1b); this current is proportional to the current generated by the substrate, respective to the transporter. Interestingly, a second consecutive OCA application to the transporter fails to elicit a response. The full displacement of BAs from the transporter occurs only after exposure to a saturating concentration of a substrate. In DAT, perfusion of secondary substrates norepinephrine (NE) and serotonin (5-HT) results in a second OCA current, decreased in amplitude and proportional to their affinity. Moreover, co-application of 5-HT or NE with OCA in DAT, and GABA with OCA in GAT1, did not alter the apparent affinity or the I-max, similar to what was previously reported in DAT in the presence of DA and OCA. The findings support the previous molecular model that suggested the ability of BAs to lock the transporter in an occluded conformation. The physiological significance is that it could possibly avoid the accumulation of small depolarizations in the cells expressing the neurotransmitter transporter. This achieves better transport efficiency in the presence of a saturating concentration of the neurotransmitter and enhances the action of the neurotransmitter on their receptors when they are present at reduced concentrations due to decreased availability of transporters

    Bile Acids Gate Dopamine Transporter Mediated Currents

    Get PDF
    Bile acids (BAs) are molecules derived from cholesterol that are involved in dietary fat absorption. New evidence supports an additional role for BAs as regulators of brain function. Sterols such as cholesterol interact with monoamine transporters, including the dopamine (DA) transporter (DAT) which plays a key role in DA neurotransmission and reward. This study explores the interactions of the BA, obeticholic acid (OCA), with DAT and characterizes the regulation of DAT activity via both electrophysiology and molecular modeling. We expressed murine DAT (mDAT) in Xenopus laevis oocytes and confirmed its functionality. Next, we showed that OCA promotes a DAT-mediated inward current that is Na+-dependent and not regulated by intracellular calcium. The current induced by OCA was transient in nature, returning to baseline in the continued presence of the BA. OCA also transiently blocked the DAT-mediated Li+-leak current, a feature that parallels DA action and indicates direct binding to the transporter in the absence of Na+. Interestingly, OCA did not alter DA affinity nor the ability of DA to promote a DAT-mediated inward current, suggesting that the interaction of OCA with the transporter is non-competitive, regarding DA. Docking simulations performed for investigating the molecular mechanism of OCA action on DAT activity revealed two potential binding sites. First, in the absence of DA, OCA binds DAT through interactions with D421, a residue normally involved in coordinating the binding of the Na+ ion to the Na2 binding site (Borre et al., J. Biol. Chem., 2014, 289, 25764\u201325773; Cheng and Bahar, Structure, 2015, 23, 2171\u20132181). Furthermore, we uncover a separate binding site for OCA on DAT, of equal potential functional impact, that is coordinated by the DAT residues R445 and D436. Binding to that site may stabilize the inward-facing (IF) open state by preventing the re-formation of the IF-gating salt bridges, R60-D436 and R445-E428, that are required for DA transport. This study suggests that BAs may represent novel pharmacological tools to regulate DAT function, and possibly, associated behaviors

    Subcellular localization of the antidepressant-sensitive norepinephrine transporter

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reuptake of synaptic norepinephrine (NE) via the antidepressant-sensitive NE transporter (NET) supports efficient noradrenergic signaling and presynaptic NE homeostasis. Limited, and somewhat contradictory, information currently describes the axonal transport and localization of NET in neurons.</p> <p>Results</p> <p>We elucidate NET localization in brain and superior cervical ganglion (SCG) neurons, aided by a new NET monoclonal antibody, subcellular immunoisolation techniques and quantitative immunofluorescence approaches. We present evidence that axonal NET extensively colocalizes with syntaxin 1A, and to a limited degree with SCAMP2 and synaptophysin. Intracellular NET in SCG axons and boutons also quantitatively segregates from the vesicular monoamine transporter 2 (VMAT2), findings corroborated by organelle isolation studies. At the surface of SCG boutons, NET resides in both lipid raft and non-lipid raft subdomains and colocalizes with syntaxin 1A.</p> <p>Conclusion</p> <p>Our findings support the hypothesis that SCG NET is segregated prior to transport from the cell body from proteins comprising large dense core vesicles. Once localized to presynaptic boutons, NET does not recycle via VMAT2-positive, small dense core vesicles. Finally, once NET reaches presynaptic plasma membranes, the transporter localizes to syntaxin 1A-rich plasma membrane domains, with a portion found in cholera toxin-demarcated lipid rafts. Our findings indicate that activity-dependent insertion of NET into the SCG plasma membrane derives from vesicles distinct from those that deliver NE. Moreover, NET is localized in presynaptic membranes in a manner that can take advantage of regulatory processes targeting lipid raft subdomains.</p

    N-Terminal Phosphorylation of the Dopamine Transporter Is Required for Amphetamine-Induced Efflux

    Get PDF
    Amphetamine (AMPH) elicits its behavioral effects by acting on the dopamine (DA) transporter (DAT) to induce DA efflux into the synaptic cleft. We previously demonstrated that a human DAT construct in which the first 22 amino acids were truncated was not phosphorylated by activation of protein kinase C, in contrast to wild-type (WT) DAT, which was phosphorylated. Nonetheless, in all functions tested to date, which include uptake, inhibitor binding, oligomerization, and redistribution away from the cell surface in response to protein kinase C activation, the truncated DAT was indistinguishable from the full-length WT DAT. Here, however, we show that in HEK-293 cells stably expressing an N-terminal-truncated DAT (del-22 DAT), AMPH-induced DA efflux is reduced by approximately 80%, whether measured by superfusion of a population of cells or by amperometry combined with the patch-clamp technique in the whole cell configuration. We further demonstrate in a full-length DAT construct that simultaneous mutation of the five N-terminal serine residues to alanine (S/A) produces the same phenotype as del-22—normal uptake but dramatically impaired efflux. In contrast, simultaneous mutation of these same five serines to aspartate (S/D) to simulate phosphorylation results in normal AMPH-induced DA efflux and uptake. In the S/A background, the single mutation to Asp of residue 7 or residue 12 restored a significant fraction of WT efflux, whereas mutation to Asp of residues 2, 4, or 13 was without significant effect on efflux. We propose that phosphorylation of one or more serines in the N-terminus of human DAT, most likely Ser7 or Ser12, is essential for AMPH-induced DAT-mediated DA efflux. Quite surprisingly, N-terminal phosphorylation shifts DAT from a “reluctant” state to a “willing” state for AMPH-induced DA efflux, without affecting inward transport. These data raise the therapeutic possibility of interfering selectively with AMPH-induced DA efflux without altering physiological DA uptake

    Impaired Striatal Akt Signaling Disrupts Dopamine Homeostasis and Increases Feeding

    Get PDF
    DOI is broken and has been reportedThe prevalence of obesity has increased dramatically worldwide. The obesity epidemic begs for novel concepts and therapeutic targets that cohesively address “food-abuse” disorders. We demonstrate a molecular link between impairment of a central kinase (Akt) involved in insulin signaling induced by exposure to a high-fat (HF) diet and dysregulation of higher order circuitry involved in feeding. Dopamine (DA) rich brain structures, such as striatum, provide motivation stimuli for feeding. In these central circuitries, DA dysfunction is posited to contribute to obesity pathogenesis. We identified a mechanistic link between metabolic dysregulation and the maladaptive behaviors that potentiate weight gain. Insulin, a hormone in the periphery, also acts centrally to regulate both homeostatic and reward-based HF feeding. It regulates DA homeostasis, in part, by controlling a key element in DA clearance, the DA transporter (DAT). Upon HF feeding, nigro-striatal neurons rapidly develop insulin signaling deficiencies, causing increased HF calorie intake. Methodology/Principal Findings We show that consumption of fat-rich food impairs striatal activation of the insulin-activated signaling kinase, Akt. HF-induced Akt impairment, in turn, reduces DAT cell surface expression and function, thereby decreasing DA homeostasis and amphetamine (AMPH)-induced DA efflux. In addition, HF-mediated dysregulation of Akt signaling impairs DA-related behaviors such as (AMPH)-induced locomotion and increased caloric intake. We restored nigro-striatal Akt phosphorylation using recombinant viral vector expression technology. We observed a rescue of DAT expression in HF fed rats, which was associated with a return of locomotor responses to AMPH and normalization of HF diet-induced hyperphagia. Conclusions/Significance Acquired disruption of brain insulin action may confer risk for and/or underlie “food-abuse” disorders and the recalcitrance of obesity. This molecular model, thus, explains how even short-term exposure to “the fast food lifestyle” creates a cycle of disordered eating that cements pathological changes in DA signaling leading to weight gain and obesity.National Institutes of Health (U.S.) (grant DA14684)National Institutes of Health (U.S.) (grant DK085712

    Intra-and extra-hospitalization monitoring of vital signs. Two sides of the same coin. Perspectives from Lims and Greenline study operators

    Get PDF
    Background: In recent years, due to the epidemiological transition, the burden of very complex patients in hospital wards has increased. Telemedicine usage appears to be a potential high-impact factor in helping with patient management, allowing hospital personnel to assess conditions in out-of-hospital scenarios. Methods: To investigate the management of chronic patients during both hospitalization for disease and discharge, randomized studies (LIMS and Greenline-HT) are ongoing in the Internal Medicine Unit at ASL Roma 6 Castelli Hospital. The study endpoints are clinical outcomes (from a patient’s perspective). In this perspective paper, the main findings of these studies, from the operators’ point of view, are reported. Operator opinions were collected from structured and unstructured surveys conducted among the staff involved, and their main themes are reported in a narrative manner. Results: Telemonitoring appears to be linked to a reduction in side-events and side-effects, which represent some of most commons risk factors for re-hospitalization and for delayed discharge during hospitalization. The main perceived advantages are increased patient safety and the quick response in case of emergency. The main disadvantages are believed to be related to low patient compliance and an infrastructural lack of optimization. Conclusions: The evidence of wireless monitoring studies, combined with the analysis of activity data, suggests the need for a model of patient management that envisages an increase in the territory of structures capable of offering patients subacute care (the possibility of antibiotic treatments, blood transfusions, infusion support, and pain therapy) for the timely management of chronic patients in the terminal phase, for which treatment in acute wards must be guaranteed only for a limited time for the management of the acute phase of their diseases

    Hypoinsulinemia Regulates Amphetamine-Induced Reverse Transport of Dopamine

    Get PDF
    The behavioral effects of psychomotor stimulants such as amphetamine (AMPH) arise from their ability to elicit increases in extracellular dopamine (DA). These AMPH-induced increases are achieved by DA transporter (DAT)-mediated transmitter efflux. Recently, we have shown that AMPH self-administration is reduced in rats that have been depleted of insulin with the diabetogenic agent streptozotocin (STZ). In vitro studies suggest that hypoinsulinemia may regulate the actions of AMPH by inhibiting the insulin downstream effectors phosphotidylinositol 3-kinase (PI3K) and protein kinase B (PKB, or Akt), which we have previously shown are able to fine-tune DAT cell-surface expression. Here, we demonstrate that striatal Akt function, as well as DAT cell-surface expression, are significantly reduced by STZ. In addition, our data show that the release of DA, determined by high-speed chronoamperometry (HSCA) in the striatum, in response to AMPH, is severely impaired in these insulin-deficient rats. Importantly, selective inhibition of PI3K with LY294002 within the striatum results in a profound reduction in the subsequent potential for AMPH to evoke DA efflux. Consistent with our biochemical and in vivo electrochemical data, findings from functional magnetic resonance imaging experiments reveal that the ability of AMPH to elicit positive blood oxygen level–dependent signal changes in the striatum is significantly blunted in STZ-treated rats. Finally, local infusion of insulin into the striatum of STZ-treated animals significantly recovers the ability of AMPH to stimulate DA release as measured by high-speed chronoamperometry. The present studies establish that PI3K signaling regulates the neurochemical actions of AMPH-like psychomotor stimulants. These data suggest that insulin signaling pathways may represent a novel mechanism for regulating DA transmission, one which may be targeted for the treatment of AMPH abuse and potentially other dopaminergic disorders

    Continued Decay of HIV Proviral DNA Upon Vaccination With HIV-1 Tat of Subjects on Long-Term ART: An 8-Year Follow-Up Study

    Get PDF
    Introduction: Tat, a key HIV virulence protein, has been targeted for the development of a therapeutic vaccine aimed at cART intensification. Results from phase II clinical trials in Italy (ISS T-002) and South Africa (ISS T-003) indicated that Tat vaccination promotes increases of CD4+ T-cells and return to immune homeostasis while reducing the virus reservoir in chronically cART-treated patients. Here we present data of 92 vaccinees (59% of total vaccinees) enrolled in the ISS T-002 8-year extended follow-up study (ISS T-002 EF-UP, ClinicalTrials.gov NCT02118168).Results: Anti-Tat antibodies (Abs) induced upon vaccination persisted for the entire follow-up in 34/92 (37%) vaccinees, particularly when all 3 Ab classes (A/G/M) were present (66% of vaccinees), as most frequently observed with Tat 30 μg regimens. CD4+ T cells increased above study-entry levels reaching a stable plateau at year 5 post-vaccination, with the highest increase (165 cells/μL) in the Tat 30 μg, 3 × regimen. CD4+ T-cell increase occurred even in subjects with CD4+ nadir ≤ 250 cells/uL and in poor immunological responders and was associated with a concomitant increase of the CD4+/CD8+ T-cell ratio, a prognostic marker of morbidity/mortality inversely related to HIV reservoir size. Proviral DNA load decreased over time, with a half-life of 2 years and an estimated 90% reduction at year 8 in the Tat 30 μg, 3 × group. In multivariate analysis the kinetic and amplitude of both CD4+ T-cell increase and proviral DNA reduction were fastest and highest in subjects with all 3 anti-Tat Ab classes and in the 30 μg, 3 × group, irrespective of drug regimens (NNRTI/NRTI vs. PI). HIV proviral DNA changes from baseline were inversely related to CD4+/CD8+ T-cell ratio and CD4+ T-cell changes, and directly related to the changes of CD8+ T cells. Further, HIV DNA decay kinetics were inversely related to the frequency and levels of intermittent viremia. Finally, Tat vaccination was similarly effective irrespective of the individual immunological status or HIV reservoir size at study entry.Conclusions: Tat immunization induces progressive immune restoration and reduction of virus reservoirs above levels reached with long-term cART, and may represent an optimal vaccine candidate for cART intensification toward HIV reservoirs depletion, functional cure, and eradication strategies
    corecore