30 research outputs found

    Irreducible Polynomials and Factorization Properties of the Ring of Integer-Valued Polynomials

    Get PDF

    In vitro effects of endogenous and exogenous cannabinoids on insulin resistance and secretion

    Get PDF
    Type 2 diabetes mellitus results from a combination of insulin resistance and impaired insulin secretion. The aim of this study is to investigate the effect of endogenous and exogenous cannabinoids on insulin resistant cell lines, viz skeletal muscle (C2C12) and fat (3T3-L1), and to investigate the effects of these cannabinoids on insulin secretion in pancreatic ÎČ-cells (INS 1). Insulin resistance was induced in the cells using 20 ng/mL TNF-α (3T3-L1) and 100 nM insulin (C2C12). Insulin resistant cells were exposed to cannabinoids for 48 hours after which glucose uptake, RT-PCR and Western blot analysis was performed. Additionally, adipokine assays were performed on the 3T3-L1 cells. The insulin resistant 3T3-L1 and C2C12 cells had reduced glucose uptake, decreased IRS-1 and Glut-4 expression indicative of an insulin resistant state. The extract and THC significantly enhanced glucose uptake, IRS-1 and Glut-4 in 3T3-L1 and C2C12 cells. The extract and THC thus have the potential to be an insulin sensitizing agent. Interleukin-6 was significantly decreased by THC. INS 1 cells, cultured under normoglycemic conditions, were exposed to cannabinoids for 48 hours after which glucose-stimulated insulin secretion, radioimmunoassay, oxygen consumption, RT-PCR and Western blot analysis was performed. Insulin stimulatory index was not significantly affected after cannabinoid exposure, except by THC. The cannabinoids decreased insulin content, in a concentration dependent manner, but the inhibition mechanism remains elusive. The cannabinoid Treated cells showed insulin gene expression levels similar to the control, while only THC proved effective in significantly stimulating Glut-2 gene expression. Oxygen consumption studies showed levels lower than the control cells. Most of the cannabinoids inhibited insulin secretion under normoglycemia except THC, while the cannabinoids exhibited the potential to improve insulin resistant adipocyte and myocytes response to glucose and gene regulation

    R31C GNRH1 mutation and congenital hypogonadotropic hypogonadism

    Get PDF
    Normosmic congenital hypogonadotropic hypogonadism (nCHH) is a rare reproductive disease leading to lack of puberty and infertility. Loss-of-function mutations of GNRH1 gene are a very rare cause of autosomal recessive nCHH. R31C GNRH1 is the only missense mutation that affects the conserved GnRH decapeptide sequence. This mutation was identified in a CpG islet in nine nCHH subjects from four unrelated families, giving evidence for a putative “hot spot”. Interestingly, all the nCHH patients carry this mutation in heterozygosis that strikingly contrasts with the recessive inheritance associated with frame shift and non-sense mutations. Therefore, after exclusion of a second genetic event, a comprehensive functional characterization of the mutant R31C GnRH was undertaken. Using different cellular models, we clearly demonstrate a dramatic reduction of the mutant decapeptide capacity to bind GnRH-receptor, to activate MAPK pathway and to trigger inositol phosphate accumulation and intracellular calcium mobilization. In addition it is less able than wild type to induce lh-beta transcription and LH secretion in gonadotrope cells. Finally, the absence of a negative dominance in vitro offers a unique opportunity to discuss the complex in vivo patho-physiology of this form of nCHH

    Blockade of Mast Cell Activation Reduces Cutaneous Scar Formation

    Get PDF
    Damage to the skin initiates a cascade of well-orchestrated events that ultimately leads to repair of the wound. The inflammatory response is key to wound healing both through preventing infection and stimulating proliferation and remodeling of the skin. Mast cells within the tissue are one of the first immune cells to respond to trauma, and upon activation they release pro-inflammatory molecules to initiate recruitment of leukocytes and promote a vascular response in the tissue. Additionally, mast cells stimulate collagen synthesis by dermal fibroblasts, suggesting they may also influence scar formation. To examine the contribution of mast cells in tissue repair, we determined the effects the mast cell inhibitor, disodium cromoglycate (DSCG), on several parameters of dermal repair including, inflammation, re-epithelialization, collagen fiber organization, collagen ultrastructure, scar width and wound breaking strength. Mice treated with DSCG had significantly reduced levels of the inflammatory cytokines IL-1a, IL-1b, and CXCL1. Although DSCG treatment reduced the production of inflammatory mediators, the rate of re-epithelialization was not affected. Compared to control, inhibition of mast cell activity caused a significant decrease in scar width along with accelerated collagen re-organization. Despite the reduced scar width, DSCG treatment did not affect the breaking strength of the healed tissue. Tryptase b1 exclusively produced by mast cells was found to increase significantly in the course of wound healing. However, DSCG treatment did not change its level in the wounds. These results indicate that blockade of mast cell activation reduces scar formation and inflammation without further weakening the healed wound

    The International Bathymetric Chart of the Arctic Ocean Version 4.0

    Get PDF
    Funder: The Nippon Foundation of Japan, grant Seabed 2030Funder: Open access funding provided by Stockholm UniversityAbstract: Bathymetry (seafloor depth), is a critical parameter providing the geospatial context for a multitude of marine scientific studies. Since 1997, the International Bathymetric Chart of the Arctic Ocean (IBCAO) has been the authoritative source of bathymetry for the Arctic Ocean. IBCAO has merged its efforts with the Nippon Foundation-GEBCO-Seabed 2030 Project, with the goal of mapping all of the oceans by 2030. Here we present the latest version (IBCAO Ver. 4.0), with more than twice the resolution (200 × 200 m versus 500 × 500 m) and with individual depth soundings constraining three times more area of the Arctic Ocean (∌19.8% versus 6.7%), than the previous IBCAO Ver. 3.0 released in 2012. Modern multibeam bathymetry comprises ∌14.3% in Ver. 4.0 compared to ∌5.4% in Ver. 3.0. Thus, the new IBCAO Ver. 4.0 has substantially more seafloor morphological information that offers new insights into a range of submarine features and processes; for example, the improved portrayal of Greenland fjords better serves predictive modelling of the fate of the Greenland Ice Sheet

    Correction to: Cluster identification, selection, and description in Cluster randomized crossover trials: the PREP-IT trials

    Get PDF
    An amendment to this paper has been published and can be accessed via the original article

    Sexual selection and the geography of Plasmodium infection in Savannah sparrows

    No full text
    According to Hamilton and Zuk\u27s hypothesis of parasite-mediated sexual selection, host-parasite coevolution maintains variation in male genetic quality and allows for strong intersexual selection in species with high rates of infection. In birds, most interspecific tests of this hypothesis relate the prevalence of blood parasites to some measure of the intensity of sexual selection. Such tests often rely on limited sampling of single populations to estimate species-wide infection rates, and many tests are thus vulnerable to intraspecific (geographic) variation in the evolutionary ecology of disease. Here, we used molecular techniques to examine variation in the prevalence of Plasmodium spp. across 14 populations of Savannah sparrows, Passerculus sandwichensis, in eastern North America. Plasmodium could not be detected in any of 68 island birds, but 34 of 119 (29%) mainland males, and 7 of 43 (16%) mainland females were infected. Among mainland birds, infection was common in southern populations but rare in New Brunswick, Canada. Overall, the prevalence of Plasmodium ranged from 0 to 60% across populations, although only 17.8% of birds were infected in the pooled (species-wide) sample. The extent of this geographic variation suggests that limited sampling of single populations is unlikely to yield accurate estimates of species-wide infection rates. However, among mainland Savannah sparrows, the prevalence of malaria correlated strongly with average male size and the degree of sexual size dimorphism. We speculate that either sexual selection leads to male-biased infection or, conversely, that high rates of infection promote the evolution of strong intersexual selection

    Residual Human Immunodeficiency Virus Type 1 Viremia in Some Patients on Antiretroviral Therapy Is Dominated by a Small Number of Invariant Clones Rarely Found in Circulating CD4(+) T Cells

    No full text
    Antiretroviral therapy can reduce human immunodeficiency virus type 1 (HIV-1) viremia to below the detection limit of ultrasensitive clinical assays (50 copies of HIV-1 RNA/ml). However, latent HIV-1 persists in resting CD4(+) T cells, and low residual levels of free virus are found in the plasma. Limited characterization of this residual viremia has been done because of the low number of virions per sample. Using intensive sampling, we analyzed residual viremia and compared these viruses to latent proviruses in resting CD4(+) T cells in peripheral blood. For each patient, we found some viruses in the plasma that were identical to viruses in resting CD4(+) T cells by pol gene sequencing. However, in a majority of patients, the most common viruses in the plasma were rarely found in resting CD4(+) T cells even when the resting cell compartment was analyzed with assays that detect replication-competent viruses. Despite the large diversity of pol sequences in resting CD4(+) T cells, the residual viremia was dominated by a homogeneous population of viruses with identical pol sequences. In the most extensively studied case, a predominant plasma sequence was also found in analysis of the env gene, and linkage by long-distance reverse transcriptase PCR established that these predominant plasma sequences represented a single predominant plasma virus clone. The predominant plasma clones were released for months to years without evident sequence change. Thus, in some patients on antiretroviral therapy, the major mechanism for residual viremia involves prolonged production of a small number of viral clones without evident evolution, possibly by cells other than circulating CD4(+) T cells
    corecore