20 research outputs found

    Climate-controlled submarine landslides on the Antarctic continental margin

    Get PDF
    Antarctica’s continental margins pose an unknown submarine landslidegenerated tsunami risk to Southern Hemisphere populations and infrastructure. Understanding the factors driving slope failure is essential to assessing future geohazards. Here, we present a multidisciplinary study of a major submarine landslide complex along the eastern Ross Sea continental slope (Antarctica) that identifies preconditioning factors and failure mechanisms. Weak layers, identified beneath three submarine landslides, consist of distinct packages of interbedded Miocene- to Pliocene-age diatom oozes and glaciomarine diamicts. The observed lithological differences, which arise from glacial to interglacial variations in biological productivity, ice proximity, and ocean circulation, caused changes in sediment deposition that inherently preconditioned slope failure. These recurrent Antarctic submarine landslides were likely triggered by seismicity associated with glacioisostatic readjustment, leading to failure within the preconditioned weak layers. Ongoing climate warming and ice retreat may increase regional glacioisostatic seismicity, triggering Antarctic submarine landslides

    Climate-controlled submarine landslides on the Antarctic continental margin

    Get PDF
    Antarctica’s continental margins pose an unknown submarine landslide-generated tsunami risk to Southern Hemisphere populations and infrastructure. Understanding the factors driving slope failure is essential to assessing future geohazards. Here, we present a multidisciplinary study of a major submarine landslide complex along the eastern Ross Sea continental slope (Antarctica) that identifies preconditioning factors and failure mechanisms. Weak layers, identified beneath three submarine landslides, consist of distinct packages of interbedded Miocene- to Pliocene-age diatom oozes and glaciomarine diamicts. The observed lithological differences, which arise from glacial to interglacial variations in biological productivity, ice proximity, and ocean circulation, caused changes in sediment deposition that inherently preconditioned slope failure. These recurrent Antarctic submarine landslides were likely triggered by seismicity associated with glacioisostatic readjustment, leading to failure within the preconditioned weak layers. Ongoing climate warming and ice retreat may increase regional glacioisostatic seismicity, triggering Antarctic submarine landslides

    Climate-controlled submarine landslides on the Antarctic continental margin

    Get PDF
    Antarctica’s continental margins pose an unknown submarine landslide-generated tsunami risk to Southern Hemisphere populations and infrastructure. Understanding the factors driving slope failure is essential to assessing future geohazards. Here, we present a multidisciplinary study of a major submarine landslide complex along the eastern Ross Sea continental slope (Antarctica) that identifies preconditioning factors and failure mechanisms. Weak layers, identified beneath three submarine landslides, consist of distinct packages of interbedded Miocene- to Pliocene-age diatom oozes and glaciomarine diamicts. The observed lithological differences, which arise from glacial to interglacial variations in biological productivity, ice proximity, and ocean circulation, caused changes in sediment deposition that inherently preconditioned slope failure. These recurrent Antarctic submarine landslides were likely triggered by seismicity associated with glacioisostatic readjustment, leading to failure within the preconditioned weak layers. Ongoing climate warming and ice retreat may increase regional glacioisostatic seismicity, triggering Antarctic submarine landslides

    The International Bathymetric Chart of the Southern Ocean Version 2 (IBCSO v2)

    Get PDF
    The Southern Ocean surrounding Antarctica is a region that is key to a range of climatic and oceanographic processes with worldwide effects, and is characterised by high biological productivity and biodiversity. Since 2013, the International Bathymetric Chart of the Southern Ocean (IBCSO) has represented the most comprehensive compilation of bathymetry for the Southern Ocean south of 60°S. Recently, the IBCSO Project has combined its efforts with the Nippon Foundation – GEBCO Seabed 2030 Project supporting the goal of mapping the world’s oceans by 2030. New datasets initiated a second version of IBCSO (IBCSO v2). This version extends to 50°S (covering approximately 2.4 times the area of seafloor of the previous version) including the gateways of the Antarctic Circumpolar Current and the Antarctic circumpolar frontal systems. Due to increased (multibeam) data coverage, IBCSO v2 significantly improves the overall representation of the Southern Ocean seafloor and resolves many submarine landforms in more detail. This makes IBCSO v2 the most authoritative seafloor map of the area south of 50°S

    Grain size determination of IODP Site 374-U1523

    No full text
    Cores U1523A, U1523B and U1523E were taken from the Iselin Bank, eastern Ross Sea, Antarctica (74°9.02′S, 176°47.70′W) in 828 m water depth during International Ocean Discovery Program Expedition 374. Grain size analysis of the 1 mm) was measured by dry sieving 1 cm³ subsamples using a nested stack at half-phi intervals (1.4 mm - 16 mm). Grain-size data is presented as the sand%, silt%, clay% and gravel%, sand%, mud% fractions according to the following grain-size intervals: very fine-coarse sand (1 mm - 62.5 μm), silt (62.5 - 4 μm) and clay (<4 μm). The volume mean grain-size diameter is also presented (D4,3)

    Submarine mass wasting on Hovgaard Ridge, Fram Strait, European Arctic

    No full text
    Hovgaard Ridge is an 1800 m high bathymetric high in the Fram Strait, the only deep-water gateway between the Arctic Ocean and the other World’s oceans. The slopes of the ridge provide evidence of various types of sediment reworking, including (1) up to 12 km wide single and merged slide scars with maximum ~30 m high headwalls and some secondary escarpments; (2) maximum 3 km wide and 130 m deep slide scars with irregular internal morphology, partly narrowing towards the foot of the slope; (3) up to 130 m deep, 1.5 km wide and maximum 8 km long channels/gullies originating from areas of increasing slope angle at the margins of a plateau on top of the ridge. Most slide scars result presumably from retrogressive failure related to weak layers in contourites or ash. The most likely trigger mechanism is seismicity related to tectonic activity within the nearby mid-ocean fracture zone. Gully/channel formation is suggested to result from cascading water masses and/or from sediment gravity flows originating from failure at the slope break after winnowing on the plateau of the ridge

    What controls submarine channel development and the morphology of deltas entering deep-water fjords?

    No full text
    River deltas and associated turbidity current systems produce some of the largest and most rapid sediment accumulations on our planet. These systems bury globally significant volumes of organic carbon and determine the runout distance of potentially hazardous sediment flows and the shape of their deposits. Here we seek to understand the main factors that determine the morphology of turbidity current systems linked to deltas in fjords, and why some locations have well developed submarine channels while others do not. Deltas and associated turbidity current systems are analysed initially in five fjord systems from British Columbia in Canada, and then more widely. This provides the basis for a general classification of delta and turbidity current system types, where rivers enter relatively deep (>200 m) water. Fjord‐delta area is found to be strongly bimodal. Avalanching of coarse‐grained bedload delivered by steep mountainous rivers produces small Gilbert‐type fan deltas, whose steep gradient (11°–25°) approaches the sediment's angle of repose. Bigger fjord‐head deltas are associated with much larger and finer‐grained rivers. These deltas have much lower gradients (1.5°–10°) that decrease offshore in a near exponential fashion. The lengths of turbidity current channels are highly variable, even in settings fed by rivers with similar discharges. This may be due to resetting of channel systems by delta‐top channel avulsions or major offshore landslides, as well as the amount and rate of sediment supplied to the delta front by rivers. © 2018 John Wiley & Sons, Ltd

    What controls submarine channel development and the morphology of deltas entering deep-water fjords?

    No full text
    River deltas and associated turbidity current systems produce some of the largest and most rapid sediment accumulations on our planet. These systems bury globally significant volumes of organic carbon and determine the runout distance of potentially hazardous sediment flows and the shape of their deposits. Here we seek to understand the main factors that determine the morphology of turbidity current systems linked to deltas in fjords, and why some locations have well developed submarine channels while others do not. Deltas and associated turbidity current systems are analysed initially in five fjord systems from British Columbia in Canada, and then more widely. This provides the basis for a general classification of delta and turbidity current system types, where rivers enter relatively deep (&gt;200 m) water. Fjord-delta area is found to be strongly bimodal. Avalanching of coarse-grained bedload delivered by steep mountainous rivers produces small Gilbert-type fan deltas, whose steep gradient (11°–25°) approaches the sediment's angle of repose. Bigger fjord-head deltas are associated with much larger and finer-grained rivers. These deltas have much lower gradients (1.5°–10°) that decrease offshore in a near exponential fashion. The lengths of turbidity current channels are highly variable, even in settings fed by rivers with similar discharges. This may be due to resetting of channel systems by delta-top channel avulsions or major offshore landslides, as well as the amount and rate of sediment supplied to the delta front by rivers.</p

    Pleistocene depositional environments and links to cryosphere-ocean interactions on the eastern Ross Sea continental slope, Antarctica (IODP Hole U1525A)

    Get PDF
    The repeated proximity of West Antarctic Ice Sheet (WAIS) ice to the eastern Ross Sea continental shelf break during past ice age cycles has been inferred to directly influence sedimentary processes occurring on the continental slope, such as turbidity current and debris flow activity; thus, the records of these processes can be used to study the past history of the WAIS. Ross Sea slope sediments may additionally provide an archive on the history and interplay of density-driven or geostrophic oceanic bottom currents with ice-sheet-driven depositional mechanisms. We investigate the upper 121 m of Hole U1525A, collected during International Ocean Discovery Program (IODP) Expedition 374 in 2018. Hole U1525A is located on the southwestern external levee of the Hillary Canyon (Ross Sea, Antarctica) and the depositional lobe of the nearby trough-mouth fan. Using core descriptions, grain size analysis, and physical properties datasets, we develop a lithofacies scheme that allows construction of a detailed depositional model and environmental history of past ice sheet-ocean interactions at the eastern Ross Sea continental shelf break/slope since ~2.4 Ma. The earliest Pleistocene interval (~2.4- ~ 1.4 Ma) represents a hemipelagic environment dominated by ice-rafting and reworking/deposition by relatively persistent bottom current activity. Finely interlaminated silty muds with ice-rafted debris (IRD) layers are interpreted as contourites. Between ~1.4 and ~0.8 Ma, geostrophic bottom current activity was weaker and turbiditic processes more common, likely related to the increased proximity of grounded ice at the shelf edge. Silty, normally-graded laminations with sharp bases may be the result of flow-stripped turbidity currents overbanking the canyon levee during periods when ice was grounded at or proximal to the shelf edge. A sandy, IRD- and foraminifera-bearing interval dated to ~1.18 Ma potentially reflects warmer oceanographic conditions and a period of stronger Antarctic Slope Current flow. This may have enhanced upwelling of warm Circumpolar Deep Water onto the shelf, leading to large-scale glacial retreat at that time. The thickest interval of turbidite interlamination was deposited after ~1 Ma, following the onset of the Mid-Pleistocene Transition, interpreted as a time when most ice sheets grew and glacial periods were longer and more extreme. Sedimentation after ~0.8 Ma was dominated by glacigenic debris flow deposition, as the trough mouth fan that dominates the eastern Ross Sea continental slope prograded and expanded over the site. These findings will help to improve estimations of WAIS ice extent in future Ross Sea shelf-based modelling studies, and provide a basis for more detailed analysis of the inception and growth of the WAIS under distinct oceanographic condition

    Sediment and organic carbon transport and deposition driven by internal tides along Monterey Canyon, offshore California

    Get PDF
    Submarine canyons are globally important conduits for sediment and organic carbon transport into the deep sea. Using a novel dataset from Monterey Canyon, offshore central California, that includes an extensive array of water column sampling devices, we address how fine-grained sediment and organic carbon are transported, mixed, fractionated, and buried along a submarine canyon. Anderson-type sediment traps were deployed 10–300 m above the seafloor on a suite of moorings anchored between 278 and 1849 m water depths along the axial channel of Monterey Canyon during three consecutive 6-month deployments (2015–2017). Tidal currents within the canyon suspended and transported fine-grained sediment and organic carbon that were captured in sediment traps, which record the composition of sediment and organic carbon transport along the canyon. High sediment accumulation rates in traps increased up-canyon and near the seafloor, where fine-scale (<1 cm) layering was increasingly distinctive in CT scans. There was no along-canyon trend in the organic carbon composition (percent modern carbon and isotopic signatures) among trap locations, suggesting effective mixing. Organic carbon content (weight percent total organic carbon) and excess 210Pb activities (dpm/g) increased down-canyon, reflecting reduced flux of sediment and organic carbon into deeper water, more distal traps. Differing organic carbon signatures in traps compared with previous measurements of seabed deposits along Monterey Canyon suggest that organic carbon transported through the canyon with internal tides may not be consistently recorded in seafloor deposits. First-order estimates from comparing organic carbon content of core and trap samples results in low organic carbon specific burial efficiency (ranging from ~26% to ~0.1%) and suggests that the modern upper Monterey Canyon may not be an effective sink for carbon. Organic carbon isotopic signatures from sediment traps in the water column show more marine influence than seafloor sediment cores; this is likely due to the deposition and reworking of seafloor deposits by sediment density flows and preferential consumption of fresh marine organic carbon on the seafloor, which is better preserved in the traps. Sediment and remaining organic carbon in canyon floor and lower flank deposits preferentially reflect episodic sediment density flow events that are unrelated to internal tides. This study provides a quantified example and conceptual model for internal-tide-related sediment and organic carbon transport, mixing, and burial trends along a submarine canyon that are likely to be similar in many canyons worldwide
    corecore