383 research outputs found

    Strong neutron pairing in core+4nn nuclei

    Get PDF
    The emission of neutron pairs from the neutron-rich N=12 isotones C18 and O20 has been studied by high-energy nucleon knockout from N19 and O21 secondary beams, populating unbound states of the two isotones up to 15 MeV above their two-neutron emission thresholds. The analysis of triple fragment-n-n correlations shows that the decay N19(-1p)C18*→C16+n+n is clearly dominated by direct pair emission. The two-neutron correlation strength, the largest ever observed, suggests the predominance of a C14 core surrounded by four valence neutrons arranged in strongly correlated pairs. On the other hand, a significant competition of a sequential branch is found in the decay O21(-1n)O20*→O18+n+n, attributed to its formation through the knockout of a deeply bound neutron that breaks the O16 core and reduces the number of pairs.Peer Reviewe

    Investigation of alpha-nuclear potential families from elastic scattering experiments

    Get PDF
    In this work we present the continuation of the reported analysis [1] of the experimentally measured angular distributions of the reaction Cd-106(alpha, alpha)Cd-106 at several different energies around the Coulomb barrier. The difficulties that arise in the study of Cd-106-alpha-nuclear potential and the so called Family Problem are addressed

    Elastic alpha-scattering of 112Sn and 124Sn at astrophysically relevant energies

    Get PDF
    The cross sections for the elastic scattering reactions {112,124}Sn(a,a){112,124}Sn at energies above and below the Coulomb barrier are presented and compared to predictions for global alpha-nucleus potentials. The high precision of the new data allows a study of the global alpha-nucleus potentials at both the proton and neutron-rich sides of an isotopic chain. In addition, local alpha-nucleus potentials have been extracted for both nuclei, and used to reproduce elastic scattering data at higher energies. Predictions from the capture cross section of the reaction 112Sn(a,g)116Te at astrophysically relevant energies are presented and compared to experimental data.Comment: 20 pages, 10 figures, accepted for publication in Phys. Rev.

    Kabul Times (April 11, 1964, vol. 3, no. 37)

    Get PDF
    High-resolution photon scattering experiments have been performed on the nucleus 45Sc at the Darmstadt superconducting electron accelerator S-DALINAC using bremsstrahlung beams with end point energies of 5.0 and 7.0MeV. Energies, absolute cross-sections and decay widths of 50 states, most of them previously unknown, have been determined. The results are compared to (γ,γ′ \gamma{^\prime}) experiments on the neighbouring closed proton shell isotope 44Ca

    How important is the Family? : Alpha nuclear potentials and p-process nucleosynthesis

    Get PDF
    Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike LicenceIn this work we present the results from the analysis of the experimentally measured angular distributions of the reaction 106Cd(α , α )106 Cd at several different energies around the Coulomb barrier. The difficulties that arise in the study of 106Cd-α -nuclear potential and the so called Family Problem are addressed in this work

    High precision 89^{89}Y(α\alpha,α\alpha)89^{89}Y scattering at low energies

    Get PDF
    Elastic scattering cross sections of the 89^{89}Y(α\alpha,α\alpha)89^{89}Y reaction have been measured at energies Ec.m._{c.m.} = 15.51 and 18.63 MeV. The high precision data for the semi-magic N=50N = 50 nucleus 89^{89}Y are used to derive a local potential and to evaluate the predictions of global and regional α\alpha-nucleus potentials. The variation of the elastic alpha scattering cross sections along the N=50N = 50 isotonic chain is investigated by a study of the ratios of angular distributions for 89^{89}Y(α\alpha,α\alpha)89^{89}Y and 92^{92}Mo(α\alpha,α\alpha)92^{92}Mo at Ec.m.≈_{c.m.} \approx 15.51 and 18.63 MeV. This ratio is a very sensitive probe at energies close to the Coulomb barrier, where scattering data alone is usually not enough to characterize the different potentials. Furthermore, α\alpha-cluster states in 93^{93}Nb = 89^{89}Y ⊗\otimes α\alpha are investigated

    187^{187}Re(\gamm,n) cross section close to and above the neutron threshold

    Full text link
    The neutron capture cross section of the unstable nucleus 186^{186}Re is studied by investigating the inverse photodisintegration reaction 187^{187}Re(γ\gamma,n). The special interest of the {\it s}-process branching point 186^{186}Re is related to the question of possible {\it s}-process contributions to the abundance of the {\it r}-process chronometer nucleus ^{187}Re.Weusethephotoactivationtechniquetomeasurephotodisintegrationrates.Ourexperimentalresultsareingoodagreementwithtwodifferentstatisticalmodelcalculations.AlthoughthecrosssectionspredictedbybothmodelsfortheinversereactionRe. We use the photoactivation technique to measure photodisintegration rates. Our experimental results are in good agreement with two different statistical model calculations. Although the cross sections predicted by both models for the inverse reaction ^{186}Re(n,Re(n,\gamma)istoolowtoremovetheoverproductionof) is too low to remove the overproduction of ^{186}$Os; the two predicted neutron-capture cross sections differ by a factor of 2.4; this calls for future theoretical study.Comment: Phys. Rev. C, in pres

    The 106Cd(α, α)106Cd elastic scattering in a wide energy range for γ process studies

    Get PDF
    Date of Acceptance: 15/04/2015Alpha elastic scattering angular distributions of the 106Cd(α, α)106Cd reaction were measured at three energies around the Coulomb barrier to provide a sensitive test for the α + nucleus optical potential parameter sets. Furthermore, the new high precision angular distributions, together with the data available from the literature were used to study the energy dependence of the locally optimized α + nucleus optical potential in a wide energy region ranging from ELab=27.0MeV down to 16.1 MeV.The potentials under study are a basic prerequisite for the prediction of α-induced reaction cross sections and thus, for the calculation of stellar reaction rates used for the astrophysical γ process. Therefore, statistical model predictions using as input the optical potentials discussed in the present work are compared to the available 106Cd + alpha cross section data.Peer reviewe
    • …
    corecore