158 research outputs found

    A new numerical description of the interaction of an ion beam with a magnetized plasma in an ECR-based charge breeding device

    Get PDF
    The ion beam-plasma interaction is a relevant topic in several fields of plasma physics, from fusion devices to modern ion sources. This paper discusses the numerical modelling of the whole beam-plus-plasma-target system in case of 1+ ions entering an ECR-based charge breeder (ECR-CB). The model is able to reproduce the ion capture and the creation of the first charge states in the selected physics case, i.e. the interaction of a 85Rb1+ ions with the plasma of the 14.5 GHz PHOENIX ECR-CB installed at the Laboratoire de Physique Subatomique et de Cosmologie (LPSC) of Grenoble. The results show that a very narrow window of physical parameters for both the beam (energy and energy spread especially) and plasma (ion temperature, density, density structural distribution, self-generated ambipolar fields) exists which is able to reproduce very well the experimental results, providing an exhaustive picture of the involved phenomena. Possible non-linear interactions and the role played by the eventual onset of instabilities are also discussed

    Gluelump spectrum from Coulomb gauge QCD

    Full text link
    We compute the energy spectrum of gluelumps defined as gluonic excitations bound to a localized, static octet source. We are able to reproduce the nontrivial ordering of the spin-parity levels and show how this is related to the non-abelian part of the Coulomb interaction between color charges.Comment: 8 pages, 5 figure

    On the Numerical Determination of the Density and Energy Spatial Distributions relevant for in-Plasma ÎČ-Decay Emission Estimation

    Get PDF
    Aim of the PANDORA (Plasmas for Astrophysics, Nuclear Decays Observation and Radiation for Archeometry) project is the in-plasma measurements of decay rates of beta radionuclides as a function of the ionization stage. In this view, a precise calculation of plasma electrons density and energy is mandatory, being responsible for ions' creations and their spatial distribution following plasma neutrality. This paper describes the results of the INFN simulation tools applied for the first time to the PANDORA plasma, including electromagnetic calculations and electrons' dynamics within the so-called self-consistent loop. The distribution of the various electrons' population will be shown, with special attention to the warm component on which depends the obtained ions' charge state distribution. The strict relation of the results with the evaluation of the in-plasma nuclear decays will be also explained

    Plasmas in compact traps: From ion sources to multidisciplinary research

    Get PDF
    In linear (minimum-B) magneto-static traps dense and hot plasmas are heated by electromagnetic radiation in the GHz domain via the Electron Cyclotron Resonance (ECR). The values of plasma density, temperature and conïŹnement times (neτi > 1013 cm−3 s; Te > 10keV) are similar to the ones of thermonuclear plasmas. The research in this ïŹeld —devoted to heating and conïŹnement optimization— has been supported by numerical modeling and advanced diagnostics, for probing the plasma especially in a non-invasive way. ECR-based systems are nowadays able to produce extremely intense (tens or hundreds of mA) beams of light ions (p, d, He), and relevant currents of heavier elements (C, O, N) up to heavy ions like Xe, Pb, U. Such beams can be extracted from the trap by a proper electrostatic system. The above-mentioned properties make these plasmas very attractive for interdisciplinary researches also, such as i) nuclear decays rates measurements in stellar-like conditions, ii) energy conversion studies, being exceptional sources of short-wavelength electromagnetic radiation (EUV, X-rays, hard X-rays and gammas, useful in material science and archaeometry), iii) environments allowing precise spectroscopical measurements as benchmarks for magnetized astrophysical plasmas. The talk will give an overview about the state-of-the-art in the ïŹeld of intense ion sources, and some new perspectives for interdisciplinary research, with a special attention to the developments based at INFN-LNS

    Measurement of the atmospheric muon flux with the NEMO Phase-1 detector

    Get PDF
    The NEMO Collaboration installed and operated an underwater detector including prototypes of the critical elements of a possible underwater km3 neutrino telescope: a four-floor tower (called Mini-Tower) and a Junction Box. The detector was developed to test some of the main systems of the km3 detector, including the data transmission, the power distribution, the timing calibration and the acoustic positioning systems as well as to verify the capabilities of a single tridimensional detection structure to reconstruct muon tracks. We present results of the analysis of the data collected with the NEMO Mini-Tower. The position of photomultiplier tubes (PMTs) is determined through the acoustic position system. Signals detected with PMTs are used to reconstruct the tracks of atmospheric muons. The angular distribution of atmospheric muons was measured and results compared with Monte Carlo simulations.Comment: Astrop. Phys., accepte

    The Antares Collaboration : Contributions to the 34th International Cosmic Ray Conference (ICRC 2015, The Hague)

    Get PDF
    The ANTARES detector, completed in 2008, is the largest neutrino telescope in the Northern hemisphere. Located at a depth of 2.5 km in the Mediterranean Sea, 40 km off the Toulon shore, its main goal is the search for astrophysical high energy neutrinos. In this paper we collect the 21 contributions of the ANTARES collaboration to the 34th International Cosmic Ray Conference (ICRC 2015). The scientific output is very rich and the contributions included in these proceedings cover the main physics results, ranging from steady point sources, diffuse searches, multi-messenger analyses to exotic physics

    Status and Recent Results of the Acoustic Neutrino Detection Test System AMADEUS

    Full text link
    The AMADEUS system is an integral part of the ANTARES neutrino telescope in the Mediterranean Sea. The project aims at the investigation of techniques for acoustic neutrino detection in the deep sea. Installed at a depth of more than 2000m, the acoustic sensors of AMADEUS are based on piezo-ceramics elements for the broad-band recording of signals with frequencies ranging up to 125kHz. AMADEUS was completed in May 2008 and comprises six "acoustic clusters", each one holding six acoustic sensors that are arranged at distances of roughly 1m from each other. The clusters are installed with inter-spacings ranging from 15m to 340m. Acoustic data are continuously acquired and processed at a computer cluster where online filter algorithms are applied to select a high-purity sample of neutrino-like signals. 1.6 TB of data were recorded in 2008 and 3.2 TB in 2009. In order to assess the background of neutrino-like signals in the deep sea, the characteristics of ambient noise and transient signals have been investigated. In this article, the AMADEUS system will be described and recent results will be presented.Comment: 7 pages, 8 figures. Proceedings of ARENA 2010, the 4th International Workshop on Acoustic and Radio EeV Neutrino Detection Activitie
    • 

    corecore