106 research outputs found

    Influenza Vaccination Generates Cytokine-Induced Memory-like NK Cells:Impact of Human Cytomegalovirus Infection

    Get PDF
    Human NK cells are activated by cytokines, immune complexes, and signals transduced via activating ligands on other host cells. After vaccination, or during secondary infection, adaptive immune responses can enhance both cytokine-driven and Ab-dependent NK cell responses. However, induction of NK cells for enhanced function after in vitro exposure to innate inflammatory cytokines has also been reported and may synergize with adaptive signals to potentiate NK cell activity during infection or vaccination. To test this hypothesis, we examined the effect of seasonal influenza vaccination on NK cell function and phenotype in 52 previously unvaccinated individuals. Enhanced, IL-2-dependent, NK cell IFN-γ responses to Influenza A/California/7/2009 virus were detected up to 4 wk postvaccination and higher in human CMV (HCMV)-seronegative (HCMV(-)) individuals than in HCMV-seropositive (HCMV(+)) individuals. By comparison, robust NK cell degranulation responses were observed both before and after vaccination, due to high titers of naturally occurring anti-influenza Abs in human plasma, and did not differ between HCMV(+) and HCMV(-) subjects. In addition to these IL-2-dependent and Ab-dependent responses, NK cell responses to innate cytokines were also enhanced after influenza vaccination; this was associated with proliferation of CD57(-) NK cells and was most evident in HCMV(+) subjects. Similar enhancement of cytokine responsiveness was observed when NK cells were cocultured in vitro with Influenza A/California/7/2009 virus, and this was at least partially dependent upon IFN-αβR2. In summary, our data indicate that attenuated or live viral vaccines promote cytokine-induced memory-like NK cells and that this process is influenced by HCMV infection

    Ultralow background periods in CAST Micromegas detectors and tests in the Canfranc underground laboratory

    Get PDF
    Yıldız, Süleyman Cenk (Dogus Author)Micromegas detectors have shown a low and stable background level in the CAST experiment due to their low radioactive materials, good energy resolution and spatial resolution. Since 2008, four ultralow background periods have been observed with the new microbulk detectors. During these periods, the background level reduced one order of magnitude, reaching a value around 10-7 s-1 keV-1 cm-2 between 2 and 7 keV. In all cases, the intensity of the three fluorescence lines (at 3, 6 and 8 keV) presented at the background spectrum reduced but the relative ratio remained stable. To clarify the origin of these periods and might determine the ultimate background level of these readouts, a CAST-like detector has been installed at the Canfranc Underground Laboratory. The actual level is compatible with the one measured in CAST. A new Micromegas detectors is being developped for working in CAST experiment during 2011, based on the conclusions of this work

    NFkB in the development of endothelial activation and damage in uremia: an in vitro approach

    Get PDF
    Impaired hemostasis coexists with accelerated atherosclerosis in patients with chronic kidney disease (CKD). The elevated frequency of atherothrombotic events has been associated with endothelial dysfunction. The relative contribution of the uremic state and the impact of the renal replacement therapies have been often disregarded. Plasma markers of endothelial activation and damage were evaluated in three groups of patients with CKD: under conservative treatment (predialysis), on hemodialysis, and on peritoneal dialysis. Activation of p38 MAPK and the transcription factor NFκB was assessed in endothelial cell (EC) cultures exposed to pooled sera from each group of patients. Most of the markers evaluated (VCAM-1, ICAM-1, VWF, circulating endothelial cells) were significantly higher in CDK patients than in controls, being significantly more increased in the group of peritoneal dialysis patients. These results correlated with the activation of both p38 MAPK and NFκB in EC cells exposed to the same sera samples, and also to the peritoneal dialysis fluids. Hemodialysis did not further contribute to the endothelial damage induced by the uremic state observed in predialysis patients, probably due to the improved biocompatibility of the hemodialysis technique in recent years, resulting in lower cellular activation. However, peritoneal dialysis seemed to exert a significant proinflammatory effect on the endothelium that could be related to the high glucose concentrations and glucose degradation products present in the dialysis fluid. Although peritoneal dialysis has been traditionally considered a more physiological technique, our results raise some doubts with respect to inflammation and EC damage

    COMPARAÇÃO DE TRÊS MÉTODOS DE REFRIGERAÇÃO DO SÊMEN OVINO PELO PERÍODO DE 24 E 48 HORAS.

    Get PDF
    A manutenção do sêmen ovino refrigerado apresenta vantagens quando comparado ao sêmen fresco e congelado. O objetivo deste trabalho foi avaliar três equipamentos de refrigeração, à 5°C, do sêmen ovino com base nas análises in vitro da motilidade total, vigor, morfologia espermática e teste hiposmótico (HOST). As amostras seminais foram refrigeradas em geladeira (G1), equipamento automatizado (G2) e dispositivo móvel (G3) durante 24 horas (MI) e 48 horas (MIII). Foi realizado teste de exaustão pela incubação por quatro horas à 37°C das amostras mantidas refrigeradas por 24 horas (MII) e 48 horas (MIV). Não houve diferença (P>0,05) entre os equipamentos de refrigeração em todos os parâmetros analisados. Conclui-se que os três métodos de refrigeração foram eficientes em manter os parâmetros in vitro de qualidade espermática similares ao sêmen fresco até 24 horas. Após 48 horas de refrigeração, em todos os métodos, houve decréscimo (P0,05) do vigor, morfologia espermática ou HOST

    Genetic Structure of the Spanish Population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetic admixture is a common caveat for genetic association analysis. Therefore, it is important to characterize the genetic structure of the population under study to control for this kind of potential bias.</p> <p>Results</p> <p>In this study we have sampled over 800 unrelated individuals from the population of Spain, and have genotyped them with a genome-wide coverage. We have carried out linkage disequilibrium, haplotype, population structure and copy-number variation (CNV) analyses, and have compared these estimates of the Spanish population with existing data from similar efforts.</p> <p>Conclusions</p> <p>In general, the Spanish population is similar to the Western and Northern Europeans, but has a more diverse haplotypic structure. Moreover, the Spanish population is also largely homogeneous within itself, although patterns of micro-structure may be able to predict locations of origin from distant regions. Finally, we also present the first characterization of a CNV map of the Spanish population. These results and original data are made available to the scientific community.</p

    Collagen XIX Alpha 1 improves prognosis in amyotrophic lateral sclerosis

    Get PDF
    The identification of more reliable diagnostic or prognostic biomarkers in age-related neurodegenerative diseases, such as Amyotrophic Lateral Sclerosis (ALS), is urgently needed. The objective in this study was to identify more reliable prognostic biomarkers of ALS mirroring neurodegeneration that could be of help in clinical trials. A total of 268 participants from three cohorts were included in this study. The muscle and blood cohorts were analyzed in two cross-sectional studies, while the serial blood cohort was analyzed in a longitudinal study at 6-monthly intervals. Fifteen target genes and fourteen proteins involved in muscle physiology and differentiation, metabolic processes and neuromuscular junction dismantlement were studied in the three cohorts. In the muscle biopsy cohort, the risk for a higher mortality in an ALS patient that showed high Collagen type XIX, alpha 1 (COL19A1) protein levels and a fast progression of the disease was 70.5% (P < 0.05), while in the blood cohort, this risk was 20% (P < 0.01). In the serial blood cohort, the linear mixed model analysis showed a significant association between increasing COL19A1 gene levels along disease progression and a faster progression during the follow-up period of 24 months (P < 0.05). Additionally, higher COL19A1 levels and a faster progression increased 17.9% the mortality risk (P < 0.01). We provide new evidence that COL19A1 can be considered a prognostic biomarker that could help the selection of homogeneous groups of patients for upcoming clinical trial and may be pointed out as a promising therapeutic target in ALS

    Identification of the Regulatory Logic Controlling Salmonella Pathoadaptation by the SsrA-SsrB Two-Component System

    Get PDF
    Sequence data from the past decade has laid bare the significance of horizontal gene transfer in creating genetic diversity in the bacterial world. Regulatory evolution, in which non-coding DNA is mutated to create new regulatory nodes, also contributes to this diversity to allow niche adaptation and the evolution of pathogenesis. To survive in the host environment, Salmonella enterica uses a type III secretion system and effector proteins, which are activated by the SsrA-SsrB two-component system in response to the host environment. To better understand the phenomenon of regulatory evolution in S. enterica, we defined the SsrB regulon and asked how this transcription factor interacts with the cis-regulatory region of target genes. Using ChIP-on-chip, cDNA hybridization, and comparative genomics analyses, we describe the SsrB-dependent regulon of ancestral and horizontally acquired genes. Further, we used a genetic screen and computational analyses integrating experimental data from S. enterica and sequence data from an orthologous regulatory system in the insect endosymbiont, Sodalis glossinidius, to identify the conserved yet flexible palindrome sequence that defines DNA recognition by SsrB. Mutational analysis of a representative promoter validated this palindrome as the minimal architecture needed for regulatory input by SsrB. These data provide a high-resolution map of a regulatory network and the underlying logic enabling pathogen adaptation to a host

    Conservation of Salmonella Infection Mechanisms in Plants and Animals

    Get PDF
    Salmonella virulence in animals depends on effectors injected by Type III Secretion Systems (T3SSs). In this report we demonstrate that Salmonella mutants that are unable to deliver effectors are also compromised in infection of Arabidopsis thaliana plants. Transcriptome analysis revealed that in contrast to wild type bacteria, T3SS mutants of Salmonella are compromised in suppressing highly conserved Arabidopsis genes that play a prominent role during Salmonella infection of animals. We also found that Salmonella originating from infected plants are equally virulent for human cells and mice. These results indicate a high degree of conservation in the defense and infection mechanism of animal and plant hosts during Salmonella infection

    GogB Is an Anti-Inflammatory Effector that Limits Tissue Damage during Salmonella Infection through Interaction with Human FBXO22 and Skp1

    Get PDF
    Bacterial pathogens often manipulate host immune pathways to establish acute and chronic infection. Many Gram-negative bacteria do this by secreting effector proteins through a type III secretion system that alter the host response to the pathogen. In this study, we determined that the phage-encoded GogB effector protein in Salmonella targets the host SCF E3 type ubiquitin ligase through an interaction with Skp1 and the human F-box only 22 (FBXO22) protein. Domain mapping and functional knockdown studies indicated that GogB-containing bacteria inhibited IκB degradation and NFκB activation in macrophages, which required Skp1 and a eukaryotic-like F-box motif in the C-terminal domain of GogB. GogB-deficient Salmonella were unable to limit NFκB activation, which lead to increased proinflammatory responses in infected mice accompanied by extensive tissue damage and enhanced colonization in the gut during long-term chronic infections. We conclude that GogB is an anti-inflammatory effector that helps regulate inflammation-enhanced colonization by limiting tissue damage during infection

    Direct Injection of Functional Single-Domain Antibodies from E. coli into Human Cells

    Get PDF
    Intracellular proteins have a great potential as targets for therapeutic antibodies (Abs) but the plasma membrane prevents access to these antigens. Ab fragments and IgGs are selected and engineered in E. coli and this microorganism may be also an ideal vector for their intracellular delivery. In this work we demonstrate that single-domain Ab (sdAbs) can be engineered to be injected into human cells by E. coli bacteria carrying molecular syringes assembled by a type III protein secretion system (T3SS). The injected sdAbs accumulate in the cytoplasm of HeLa cells at levels ca. 105–106 molecules per cell and their functionality is shown by the isolation of sdAb-antigen complexes. Injection of sdAbs does not require bacterial invasion or the transfer of genetic material. These results are proof-of-principle for the capacity of E. coli bacteria to directly deliver intracellular sdAbs (intrabodies) into human cells for analytical and therapeutic purposes
    corecore