276 research outputs found

    Social Status Affects the Degree of Sex Difference in the Songbird Brain

    Get PDF
    It is thought that neural sex differences are functionally related to sex differences in the behaviour of vertebrates. A prominent example is the song control system of songbirds. Inter-specific comparisons have led to the hypothesis that sex differences in song nuclei size correlate with sex differences in song behaviour. However, only few species with similar song behaviour in both sexes have been investigated and not all data fit the hypothesis. We investigated the proposed structure – function relationship in a cooperatively breeding and duetting songbird, the white-browed sparrow weaver (Plocepasser mahali). This species lives in groups of 2–10 individuals, with a dominant breeding pair and male and female subordinates. While all male and female group members sing duet and chorus song, a male, once it has reached the dominant position in the group, sings an additional type of song that comprises a distinct and large syllable repertoire. Here we show for both types of male – female comparisons a male-biased sex difference in neuroanatomy of areas of the song production pathway (HVC and RA) that does not correlate with the observed polymorphism in song behaviour. In contrast, in situ hybridisation of mRNA of selected genes expressed in the song nucleus HVC reveals a gene expression pattern that is either similar between sexes in female – subordinate male comparisons or female-biased in female – dominant male comparisons. Thus, the polymorphic gene expression pattern would fit the sex- and status-related song behaviour. However, this implies that once a male has become dominant it produces the duetting song with a different neural phenotype than subordinate males

    Attraction of cod Gadus morhua from coastal spawning grounds to salmon farms

    Get PDF
    Wild fish aggregate at aquaculture net-pens, but the underlying mechanisms are not fully understood. This study examined how salmon farms attract coastal Atlantic cod Gadus morhua from their inshore spawning grounds. Acoustic receivers were deployed at 5 known cod spawning grounds and 6 salmon Salmo salar farms located at varying distances from these grounds in a mid-Norway study site. Cod were caught at each spawning ground annually from 2017-2019, fitted with acoustic transmitters and released (n = 535). A total of 289 tagged cod (54%) were detected at the salmon farms, with more cod detected at farms closest to the focal spawning grounds and at operational farms. The latter result is likely linked to the availability of feeding opportunities at farm locations. Those cod that were detected by the receivers spent less time at farms farther from their release locations. For the farm-associated cod, 70% were detected for 1 mo close to the farms, with 1 individual staying 720 d underneath the farm. A total of 135 cod visited 2 or more farms, with farms in proximity more connected in terms of inter-farm movement. Some of the cod utilizing these local spawning grounds likely have considerable dietary input from salmon feed.publishedVersionpublishedVersio

    The Impact of Global Warming and Anoxia on Marine Benthic Community Dynamics: an Example from the Toarcian (Early Jurassic)

    Get PDF
    The Pliensbachian-Toarcian (Early Jurassic) fossil record is an archive of natural data of benthic community response to global warming and marine long-term hypoxia and anoxia. In the early Toarcian mean temperatures increased by the same order of magnitude as that predicted for the near future; laminated, organic-rich, black shales were deposited in many shallow water epicontinental basins; and a biotic crisis occurred in the marine realm, with the extinction of approximately 5% of families and 26% of genera. High-resolution quantitative abundance data of benthic invertebrates were collected from the Cleveland Basin (North Yorkshire, UK), and analysed with multivariate statistical methods to detect how the fauna responded to environmental changes during the early Toarcian. Twelve biofacies were identified. Their changes through time closely resemble the pattern of faunal degradation and recovery observed in modern habitats affected by anoxia. All four successional stages of community structure recorded in modern studies are recognised in the fossil data (i.e. Stage III: climax; II: transitional; I: pioneer; 0: highly disturbed). Two main faunal turnover events occurred: (i) at the onset of anoxia, with the extinction of most benthic species and the survival of a few adapted to thrive in low-oxygen conditions (Stages I to 0) and (ii) in the recovery, when newly evolved species colonized the re-oxygenated soft sediments and the path of recovery did not retrace of pattern of ecological degradation (Stages I to II). The ordination of samples coupled with sedimentological and palaeotemperature proxy data indicate that the onset of anoxia and the extinction horizon coincide with both a rise in temperature and sea level. Our study of how faunal associations co-vary with long and short term sea level and temperature changes has implications for predicting the long-term effects of “dead zones” in modern oceans

    Attraction of cod Gadus morhua from coastal spawning grounds to salmon farms

    Get PDF
    Wild fish aggregate at aquaculture net-pens, but the underlying mechanisms are not fully understood. This study examined how salmon farms attract coastal Atlantic cod Gadus morhua from their inshore spawning grounds. Acoustic receivers were deployed at 5 known cod spawning grounds and 6 salmon Salmo salar farms located at varying distances from these grounds in a mid-Norway study site. Cod were caught at each spawning ground annually from 2017-2019, fitted with acoustic transmitters and released (n = 535). A total of 289 tagged cod (54%) were detected at the salmon farms, with more cod detected at farms closest to the focal spawning grounds and at operational farms. The latter result is likely linked to the availability of feeding opportunities at farm locations. Those cod that were detected by the receivers spent less time at farms farther from their release locations. For the farm-associated cod, 70% were detected for 1 mo close to the farms, with 1 individual staying 720 d underneath the farm. A total of 135 cod visited 2 or more farms, with farms in proximity more connected in terms of inter-farm movement. Some of the cod utilizing these local spawning grounds likely have considerable dietary input from salmon feed.publishedVersio

    Hydrogen adsorption at dislocations and cracks in Fe

    Full text link
    Solute adsorption to dislocations and cracks is considered in both the Boltzmann and Fermi-Dirac models. Explicit sums are developed for the integral amount of solute adsorbed in the defect fields. Examples of the use of the method are presented for the case of hydrogen in iron and compared with earlier results. The similarity of the condensed atmosphere of hydrogen to hydride precipitation is noted and its relevancy to hydrogen embrittlement models is discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/22483/1/0000024.pd

    Cloning and characterization of microRNAs from rainbow trout (Oncorhynchus mykiss): Their expression during early embryonic development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Current literature and our previous results on expression patterns of oocyte-specific genes and transcription factors suggest a global but highly regulated maternal mRNA degradation at the time of embryonic genome activation (EGA). MicroRNAs (miRNAs) are small, non-coding regulatory RNAs (19–23 nucleotides) that regulate gene expression by guiding target mRNA cleavage or translational inhibition. These regulatory RNAs are potentially involved in the degradation of maternally inherited mRNAs during early embryogenesis.</p> <p>Results</p> <p>To identify miRNAs that might be important for early embryogenesis in rainbow trout, we constructed a miRNA library from a pool of unfertilized eggs and early stage embryos. Sequence analysis of random clones from the library identified 14 miRNAs, 4 of which are novel to rainbow trout. Real-time PCR was used to measure the expression of all cloned miRNAs during embryonic development. Four distinct expression patterns were observed and some miRNAs showed up-regulated expression during EGA. Analysis of tissue distribution of these miRNAs showed that some are present ubiquitously, while others are differentially expressed among different tissues. We also analyzed the expression patterns of Dicer, the enzyme required for the processing of miRNAs and Stat3, a transcription factor involved in activating the transcription of miR-21. Dicer is abundantly expressed during EGA and Stat3 is up-regulated before the onset of EGA.</p> <p>Conclusion</p> <p>This study led to the discovery of 14 rainbow trout miRNAs. Our data support the notion that Dicer processes miRNAs and Stat3 induces expression of miR-21 and possibly other miRNAs during EGA. These miRNAs in turn guide maternal mRNAs for degradation, which is required for normal embryonic development.</p

    Defective removal of ribonucleotides from DNA promotes systemic autoimmunity

    Get PDF
    Genome integrity is continuously challenged by the DNA damage that arises during normal cell metabolism. Biallelic mutations in the genes encoding the genome surveillance enzyme ribonuclease H2 (RNase H2) cause Aicardi-Goutières syndrome (AGS), a pediatric disorder that shares features with the autoimmune disease systemic lupus erythematosus (SLE). Here we determined that heterozygous parents of AGS patients exhibit an intermediate autoimmune phenotype and demonstrated a genetic association between rare RNASEH2 sequence variants and SLE. Evaluation of patient cells revealed that SLE- and AGS-associated mutations impair RNase H2 function and result in accumulation of ribonucleotides in genomic DNA. The ensuing chronic low level of DNA damage triggered a DNA damage response characterized by constitutive p53 phosphorylation and senescence. Patient fibroblasts exhibited constitutive upregulation of IFN-stimulated genes and an enhanced type I IFN response to the immunostimulatory nucleic acid polyinosinic:polycytidylic acid and UV light irradiation, linking RNase H2 deficiency to potentiation of innate immune signaling. Moreover, UV-induced cyclobutane pyrimidine dimer formation was markedly enhanced in ribonucleotide-containing DNA, providing a mechanism for photosensitivity in RNase H2-associated SLE. Collectively, our findings implicate RNase H2 in the pathogenesis of SLE and suggest a role of DNA damage-associated pathways in the initiation of autoimmunity
    corecore