18 research outputs found

    Role of bulge epidermal stem cells and TSLP signaling in psoriasis

    Get PDF
    Psoriasis is a common inflammatory skin disease involving a cross-talk between epidermal and immune cells. The role of specific epidermal stem cell populations, including hair follicle stem cells (HF-SCs) in psoriasis is not well defined. Here, we show reduced expression of c-JUN and JUNB in bulge HF-SCs in patients with scalp psoriasis. Using lineage tracing in mouse models of skin inflammation with inducible deletion of c-Jun and JunB, we found that mutant bulge HF-SCs initiate epidermal hyperplasia and skin inflammation. Mechanistically, thymic stromal lymphopoietin (TSLP) was identified in mutant cells as a paracrine factor stimulating proliferation of neighboring non-mutant epidermal cells, while mutant inter-follicular epidermal (IFE) cells are lost over time. Blocking TSLP in psoriasis-like mice reduced skin inflammation and decreased epidermal proliferation, VEGFα expression, and STAT5 activation. These findings unravel distinct roles of HF-SCs and IFE cells in inflammatory skin disease and provide novel mechanistic insights into epidermal cell interactions in inflammation.We thank Drs. M. Serrano and M. Perez-Moreno for the Gt(ROSA)26Sortrn4(ACTB-tdTomato,-EGFP)Luo/J and K15-Cre-PGR mouse lines. We are very grateful to Drs. M. Perez-Moreno, F. Real, O. Uluckan, L. Bakiri and the laboratory members of the Sibilia and Wagner groups for critical reading of the manuscript and valuable suggestions. We thank V. Bermeo, G. Medrano, S. Leceta, O. Grana, and M. Perez for their technical help and IT support. We acknowledge R. Paus laboratory members for the shipment of hair follicle samples. N.G.L. received funding from the People programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no 608765. A.I is funded by the Institute of Health Carlos III (PI16/01430). The Wagner laboratory was funded by a grant from the Spanish Ministry of Economy and competitiveness (SAF2015-70857RE, cofounded by the European Regional Development Fund) and is supported by the ERC (ERC-AdG 2016 CSI-Fun).S

    Sterile neutrino portal to Dark Matter I: the U(1) B−L case

    Get PDF
    In this paper we explore the possibility that the sterile neutrino and Dark Matter sectors in the Universe have a common origin. We study the consequences of this assumption in the simple case of coupling the dark sector to the Standard Model via a global U(1)B−L, broken down spontaneously by a dark scalar. This dark scalar provides masses to the dark fermions and communicates with the Higgs via a Higgs portal coupling. We find an interesting interplay between Dark Matter annihilation to dark scalars — the CP-even that mixes with the Higgs and the CP-odd which becomes a Goldstone boson, the Majoron — and heavy neutrinos, as well as collider probes via the coupling to the Higgs. Moreover, Dark Matter annihilation into sterile neutrinos and its subsequent decay to gauge bosons and quarks, charged leptons or neutrinos lead to indirect detection signatures which are close to current bounds on the gamma ray flux from the galactic center and dwarf galaxies

    Predictive signature of response to neoadjuvant chemotherapy in muscle-invasive bladder cancer integrating mRNA expression, taxonomic subtypes, and clinicopathological features

    Get PDF
    Background and objectiveNeoadjuvant chemotherapy (NAC) followed by cystectomy is the standard of care in muscle-invasive bladder cancer (MIBC). Pathological response has been associated with longer survival, but no currently available clinicopathological variables can identify patients likely to respond, highlighting the need for predictive biomarkers. We sought to identify a predictive signature of response to NAC integrating clinical score, taxonomic subtype, and gene expression.Material and methodsFrom 1994 to 2014, pre-treatment tumor samples were collected from MIBC patients (stage T2-4N0/+M0) at two Spanish hospitals. A clinical score was determined based on stage, hydronephrosis and histology. Taxonomic subtypes (BASQ, luminal, and mixed) were identified by immunohistochemistry. A custom set of 41 genes involved in DNA damage repair and immune response was analyzed in 84 patients with the NanoString nCounter platform. Genes related to pathological response were identified by LASSO penalized logistic regression. NAC consisted of cisplatin/methotrexate/vinblastine until 2000, after which most patients received cisplatin/gemcitabine. The capacity of the integrated signature to predict pathological response was assessed with AUC. Overall survival (OS) and disease-specific survival (DSS) were analyzed with the Kaplan-Meier method.ResultsLASSO selected eight genes to be included in the signature (RAD51, IFNγ, CHEK1, CXCL9, c-MET, KRT14, HERC2, FOXA1). The highest predictive accuracy was observed with the inclusion in the model of only three genes (RAD51, IFNɣ, CHEK1). The integrated clinical-taxonomic-gene expression signature including these three genes had a higher predictive ability (AUC=0.71) than only clinical score plus taxonomic subtype (AUC=0.58) or clinical score alone (AUC=0.56). This integrated signature was also significantly associated with OS (p=0.02) and DSS (p=0.02).ConclusionsWe have identified a predictive signature for response to NAC in MIBC patients that integrates the expression of three genes with clinicopathological characteristics and taxonomic subtypes. Prospective studies to validate these results are ongoing

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    THY-1 Receptor Expression Differentiates Cardiosphere-Derived Cells with Divergent Cardiogenic Differentiation Potential

    Get PDF
    Despite over a decade of intense research, the identity and differentiation potential of human adult cardiac progenitor cells (aCPC) remains controversial. Cardiospheres have been proposed as a means to expand aCPCs in vitro, but the identity of the progenitor cell within these 3D structures is unknown. We show that clones derived from cardiospheres could be subdivided based on expression of thymocyte differentiation antigen 1 (THY-1/CD90) into two distinct populations that exhibit divergent cardiac differentiation potential. One population, which is CD90+, expressed markers consistent with a mesenchymal/myofibroblast cell. The second clone type was CD90− and could form mature, functional myocytes with sarcomeres albeit at a very low rate. These two populations of cardiogenic clones displayed distinct cell surface markers and unique transcriptomes. Our study suggests that a rare aCPC exists in cardiospheres along with a mesenchymal/myofibroblast cell, which demonstrates incomplete cardiac myocyte differentiation

    Correction: Characterization and Therapeutic Potential of Induced Pluripotent Stem Cell-Derived Cardiovascular Progenitor Cells.

    Get PDF
    <div><h3>Background</h3><p>Cardiovascular progenitor cells (CPCs) have been identified within the developing mouse heart and differentiating pluripotent stem cells by intracellular transcription factors Nkx2.5 and Islet 1 (Isl1). Study of endogenous and induced pluripotent stem cell (iPSC)-derived CPCs has been limited due to the lack of specific cell surface markers to isolate them and conditions for their <em>in vitro</em> expansion that maintain their multipotency.</p> <h3>Methodology/Principal Findings</h3><p>We sought to identify specific cell surface markers that label endogenous embryonic CPCs and validated these markers in iPSC-derived Isl1<sup>+</sup>/Nkx2.5<sup>+</sup> CPCs. We developed conditions that allow propagation and characterization of endogenous and iPSC-derived Isl1<sup>+</sup>/Nkx2.5<sup>+</sup> CPCs and protocols for their clonal expansion <em>in vitro</em> and transplantation <em>in vivo</em>. Transcriptome analysis of CPCs from differentiating mouse embryonic stem cells identified a panel of surface markers. Comparison of these markers as well as previously described surface markers revealed the combination of Flt1<sup>+</sup>/Flt4<sup>+</sup> best identified and facilitated enrichment for Isl1<sup>+</sup>/Nkx2.5<sup>+</sup> CPCs from embryonic hearts and differentiating iPSCs. Endogenous mouse and iPSC-derived Flt1<sup>+</sup>/Flt4<sup>+</sup> CPCs differentiated into all three cardiovascular lineages <em>in vitro</em>. Flt1<sup>+</sup>/Flt4<sup>+</sup> CPCs transplanted into left ventricles demonstrated robust engraftment and differentiation into mature cardiomyocytes (CMs).</p> <h3>Conclusion/Significance</h3><p>The cell surface marker combination of Flt1 and Flt4 specifically identify and enrich for an endogenous and iPSC-derived Isl1<sup>+</sup>/Nkx2.5<sup>+</sup> CPC with trilineage cardiovascular potential <em>in vitro</em> and robust ability for engraftment and differentiation into morphologically and electrophysiologically mature adult CMs <em>in vivo</em> post transplantation into adult hearts.</p> </div
    corecore