94 research outputs found
Higher Protein Density Diets Are Associated With Greater Diet Quality and Micronutrient Intake in Healthy Young Adults
Objective: This study characterized habitual dietary protein intake in healthy young adults entering military service and explored whether diet protein density is associated with diet quality and micronutrient intake.Methods: An FFQ was used to estimate habitual dietary intake and calculate HEI scores in 276 males [mean(SD), age:21.1y(3.8)] and 254 females [age:21.2y(3.7)]. Multivariate-adjusted MANCOVA and ANCOVA models were used to identify associations between protein density quartiles and HEI scores and micronutrient intake. Higher HEI components scores for sodium, refined grains, and empty calories indicate lower intake; higher scores for all other components indicate higher intakes.Results: Mean(SD) energy-adjusted protein intakes were 29.3(3.2), 36.0(1.4), 40.8(1.3), and 47.9(3.9) g/1,000 kcal for protein density quartiles 1–4, respectively. For males, empty calorie scores as well as dark green and orange vegetable scores were higher in quartiles 3 and 4 than 1 and 2 (all, p < 0.05). Scores for total vegetable, dairy, and total protein foods were lower in quartile 1 vs. quartiles 2, 3, and 4 (all, p < 0.05). Sodium scores decreased as quartiles increased (p < 0.001). Total HEI, fruit, whole grains, seafood and plant protein, fatty acids, and refined grain scores did not differ. For females, total HEI, vegetable, and total protein foods scores were higher in quartiles 3 and 4 than 1 and 2 (all, p < 0.05). Empty calorie scores increased as quartile increased (p < 0.05). Dairy scores were higher in quartiles 2, 3, and 4 than 1 (p < 0.05). Whole fruit scores were lowest in quartile 1 (p < 0.05). Whole grain as well as seafood and plant protein scores were higher in quartile 4 vs. 1 (both, p < 0.05). Sodium scores decreased as quartile increased (p < 0.001). Fatty acids scores did not differ. For males and females, micronutrient intakes progressively increased across quartiles with the exception of calcium and vitamin C, (all, p < 0.05). Intakes remained nearly the same when controlled for fruit and vegetable intake.Conclusion: These cross-sectional data suggest that habitually consuming a higher protein density diet is associated with better scores for some, but not all, diet quality components in males, better overall diet quality scores in females, and greater intakes of micronutrients in both male and female healthy, young adults entering military service
Novel essential amino acid supplements enriched with L-leucine facilitate increased protein and energy intakes in older women: a randomised controlled trial
Background: Inadequate protein intake (PI), containing a sub-optimal source of essential amino acids (EAAs), and reduced appetite are contributing factors to age-related sarcopenia. The satiating effects of dietary protein per se may negatively affect energy intake (EI), thus there is a need to explore alternative strategies to facilitate PI without compromising appetite and subsequent EI. Methods: Older women completed two experiments (EXP1 and EXP2) where they consumed either a Bar (565 kJ), a Gel (477 kJ), both rich in EAAs (7.5 g, 40% L-leucine), or nothing (Control). In EXP1, participants (n=10, 68±5 years, mean±SD) consumed Bar, Gel or Control with appetite sensations and appetite-related hormonal responses monitored for one hour, followed by consumption of an ad libitum breakfast (ALB). In EXP2, participants (n=11, 69±5 years) ingested Bar, Gel or Control alongside an ALB. Results: In EXP1, EI at ALB was not different (P=0.674) between conditions (1179±566, 1254±511, 1206±550 kJ for the Control, Bar, and Gel respectively). However, total EI was significantly higher in the Bar and Gel compared to the Control after accounting for the energy content of the supplements (P<0.0005). Analysis revealed significantly higher appetite Area under the Curve (AUC) (P<0.007), a tendency for higher acylated ghrelin AUC (P=0.087), and significantly lower pancreatic polypeptide AUC (P=0.02) in the Control compared with the Bar and Gel. In EXP2, EI at ALB was significantly higher (P=0.028) in the Control (1282±513 kJ) compared to the Bar (1026±565 kJ) and Gel (1064±495 kJ). However, total EI was significantly higher in the Bar and Gel after accounting for the energy content of the supplements (P<0.007). Conclusions: Supplementation with either the Bar or Gel increased total energy intake whether consumed one hour before or during breakfast. This may represent an effective nutritional means for addressing protein and total energy deficiencies in older women
EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on Dietary Reference Values for protein
This opinion of the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) deals with the setting of Dietary Reference Values (DRVs) for protein. The Panel concludes that a Population Reference Intake (PRI) can be derived from nitrogen balance studies. Several health outcomes possibly associated with protein intake were also considered but data were found to be insufficient to establish DRVs. For healthy adults of both sexes, the average requirement (AR) is 0.66 g protein/kg body weight per day based on nitrogen balance data. Considering the 97.5th percentile of the distribution of the requirement and assuming an efficiency of utilisation of dietary protein for maintenance of 47 %, the PRI for adults of all ages was estimated to be 0.83 g protein/kg body weight per day and is applicable both to high quality protein and to protein in mixed diets. For children from six months onwards, age-dependent requirements for growth estimated from average daily rates of protein deposition and adjusted by a protein efficiency for growth of 58 % were added to the requirement for maintenance of 0.66 g/kg body weight per day. The PRI was estimated based on the average requirement plus 1.96 SD using a combined SD for growth and maintenance.For pregnancy, an intake of 1, 9 and 28 g/d in the first, second and third trimesters, respectively, is proposed in addition to the PRI for non-pregnant women. For lactation, a protein intake of 19 g/d during the first six months, and of 13 g/d after six months, is proposed in addition to the PRI for non-lactating women. Data are insufficient to establish a Tolerable Upper Intake Level (UL) for protein. Intakes up to twice the PRI are regularly consumed from mixed diets by some physically active and healthy adults in Europe and are considered safe
Exploring the mechanisms of dietary protein-induced increases in intestinal calcium absorption
In humans, increasing dietary protein increases calcium (Ca) absorption. As measured by dual stable Ca isotopes, when healthy adults ingest a high protein diet (2.1 g/kg/day), skeletal turnover tends to be reduced and Ca absorption significantly increases and almost entirely accounts for the observed hypercalciuria. To better define this effect, rats were randomly assigned to control (20%), low (5%) or high (40%) protein diets for 7 days. All diets were isocaloric and contained 0.45% Ca and 0.35% P. Twenty-four hour urines, blood and feces were collected to assess Ca metabolism, Ca balance and bone turnover. Brush border membrane vesicles (BBMV) were prepared from duodena from rats consuming the low or high protein diet for 7 days to evaluate transcellular Ca transport. ^ In another group of rats consuming either the low or high protein diet, duodenal RNA was isolated and gene profiling performed. To study the direct effect of amino acids, Ca transport was evaluated across Caco-2 cell monolayers. ^ In rats, urinary Ca (UCa) paralleled protein intake. Rats consuming the high protein diet absorbed and retained more Ca compared to the low protein group (48.5% vs. 34.1% and 45.8% vs. 33.7% respectively, p\u3c0.01). Ca uptake was significantly higher in the BBMV from rats consuming the high protein diet (p\u3c0.001). Increased Vmax explained the higher Ca uptake in BBMV from the high protein group (90 vs. 36 nmol Ca/mg protein/min, p\u3c0.001- 95% CI: 46-2486 and 14-55). ^ No known transcellular Ca transport proteins were identified by the microarray screen but the Ca permissible tight junction protein, claudin-2, was found to be 2.5-fold higher (p\u3c0.01) in the high protein group. Consistent with this, claudin-2 expression and paracellular Ca flux were both increased in Caco-2 cells exposed to amino acids. In conclusion, the rat model recapitulates the findings in humans in that changes in Ca absorption explain the changes in UCa. The BBMV studies indicate that increased transcellular Ca uptake contributes at least in part to the increase in Ca absorption during the high protein diet. Dietary protein/amino acids also directly improve paracellular Ca absorption likely by increasing claudin-2 expression.
Cardiometabolic Health in Submariners Returning from a 3-Month Patrol
Confined space, limited exercise equipment, rotating shift work and reduced sleep may affect cardiometabolic health in submariners. To test this hypothesis, 53 male U.S. Submariners (20–39 years) were studied before and after a 3-month routine submarine patrol. Measures included anthropometrics, dietary and physical activity, biomarkers of cardiometabolic health, energy and appetite regulation, and inflammation. Before deployment, 62% of submariners had a body fat % (BF%) ≥ 25% (obesity), and of this group, 30% met the criteria for metabolic syndrome. In obese volunteers, insulin, the homeostatic model assessment of insulin resistance (HOMA-IR), leptin, the leptin/adiponectin ratio, and pro-inflammatory chemokines growth-related oncogene and macrophage-derived chemokine were significantly higher compared to non-obese submariners. Following the patrol, a significant mean reduction in body mass (5%) and fat-mass (11%) occurred in the obese group as a result of reduced energy intake (~2000 kJ) during the patrol; and, independent of group, modest improvements in serum lipids and a mean reduction in interferon γ-induced protein 10 and monocyte chemotactic protein 1 were observed. Since 43% of the submariners remained obese, and 18% continued to meet the criteria for metabolic syndrome following the patrol, the magnitude of weight loss was insufficient to completely abolish metabolic dysfunction. Submergence up to 3-months, however, does not appear to be the cause of obesity, which is similar to that of the general population
Calorie Restricted High Protein Diets Downregulate Lipogenesis and Lower Intrahepatic Triglyceride Concentrations in Male Rats
The purpose of this investigation was to assess the influence of calorie restriction (CR) alone, higher-protein/lower-carbohydrate intake alone, and combined CR higher-protein/lower-carbohydrate intake on glucose homeostasis, hepatic de novo lipogenesis (DNL), and intrahepatic triglycerides. Twelve-week old male Sprague Dawley rats consumed ad libitum (AL) or CR (40% restriction), adequate (10%), or high (32%) protein (PRO) milk-based diets for 16 weeks. Metabolic profiles were assessed in serum, and intrahepatic triglyceride concentrations and molecular markers of de novo lipogenesis were determined in liver. Independent of calorie intake, 32% PRO tended to result in lower homeostatic model assessment of insulin resistance (HOMA-IR) values compared to 10% PRO, while insulin and homeostatic model assessment of β-cell function (HOMA-β) values were lower in CR than AL, regardless of protein intake. Intrahepatic triglyceride concentrations were 27.4 ± 4.5 and 11.7 ± 4.5 µmol·g−1 lower (p < 0.05) in CR and 32% PRO compared to AL and 10% PRO, respectively. Gene expression of fatty acid synthase (FASN), stearoyl-CoA destaurase-1 (SCD1) and pyruvate dehydrogenase kinase, isozyme 4 (PDK4) were 45% ± 1%, 23% ± 1%, and 57% ± 1% lower (p < 0.05), respectively, in CR than AL, regardless of protein intake. Total protein of FASN and SCD were 50% ± 1% and 26% ± 1% lower (p < 0.05) in 32% PRO compared to 10% PRO, independent of calorie intake. Results from this investigation provide evidence that the metabolic health benefits associated with CR—specifically reduction in intrahepatic triglyceride content—may be enhanced by consuming a higher-protein/lower-carbohydrate diet
Acute effects of different degrees of ultra-endurance exercise on systemic inflammatory responses
BACKGROUND:
Intense physical stress might promote inflammatory responses, whereas a regular physical exercise has positive influence. Little is known on the acute metabolic and inflammatory responses to different levels of strenuous exercise in trained athletes.
AIM:
To compare the short-term effect of two different ultra-endurance competitions on the inflammatory profile in male triathletes.
METHODS:
We studied 14 Ironman (IR) and 13 Half Ironman (HIR) before and after their own specific race. We assessed body composition and measured blood cells, lipids, iron metabolism and plasma levels of some acute-phase cytokines and inflammatory markers.
RESULTS:
After the race, IR showed reduced total body water and fat-free mass, not related with the duration of exercise, and increased white cells and platelets; high-density lipoprotein levels also increased. IR, but not HIR, showed reduced iron levels, increased ferritin and transferrin, reduced % saturated transferrin. HIR showed higher basal interleukin (IL)-6, tumour necrosis factor (TNF)-α, IL-10, IL-1β than IR; however, the post-performance rise was greater in IR. Irisin increased only in HIR and osteocalcin decreased in IR. In the whole study group, delta of white blood cells was directly related with delta of monocyte chemoattractant protein 1, and Δ ferritin was inversely related with Δosteocalcin.
CONCLUSIONS:
A single ultra-endurance competition induces an inflammatory response depending on the duration of physical effort, with increased acute-phase cytokines, and an altered iron metabolism. Irisin, whose biological meaning is still uncertain, seems to be associated with acute variations of some metabolic parameters
- …