662 research outputs found

    A supernova remnant coincident with the slow X-ray pulsar AX J1845-0258

    Get PDF
    We report on Very Large Array observations in the direction of the recently-discovered slow X-ray pulsar AX J1845-0258. In the resulting images, we find a 5-arcmin shell of radio emission; the shell is linearly polarized with a non-thermal spectral index. We class this source as a previously unidentified, young (< 8000 yr), supernova remnant (SNR), G29.6+0.1, which we propose is physically associated with AX J1845-0258. The young age of G29.6+0.1 is then consistent with the interpretation that anomalous X-ray pulsars (AXPs) are isolated, highly magnetized neutron stars ("magnetars"). Three of the six known AXPs can now be associated with SNRs; we conclude that AXPs are young (~<10 000 yr) objects, and that they are produced in at least 5% of core-collapse supernovae.Comment: 4 pages, 1 embedded EPS file, uses emulateapj.sty. Accepted to ApJ Letter

    A Proper Motion for the Pulsar Wind Nebula G359.23-0.82, "the Mouse," Associated with the Energetic Radio Pulsar J1747-2958

    Full text link
    The "Mouse" (PWN G359.23-0.82) is a spectacular bow shock pulsar wind nebula, powered by the radio pulsar J1747-2958. The pulsar and its nebula are presumed to have a high space velocity, but their proper motions have not been directly measured. Here we present 8.5 GHz interferometric observations of the Mouse nebula with the Very Large Array, spanning a time baseline of 12 yr. We measure eastward proper motion for PWN G359.23-0.82 (and hence indirectly for PSR J1747-2958) of 12.9+/-1.8 mas/yr, which at an assumed distance of 5 kpc corresponds to a transverse space velocity of 306+/-43 km/s. Considering pressure balance at the apex of the bow shock, we calculate an in situ hydrogen number density of approximately 1.0(-0.2)(+0.4) cm^(-3) for the interstellar medium through which the system is traveling. A lower age limit for PSR J1747-2958 of 163(-20)(+28) kyr is calculated by considering its potential birth site. The large discrepancy with the pulsar's spin-down age of 25 kyr is possibly explained by surface dipole magnetic field growth on a timescale ~15 kyr, suggesting possible future evolution of PSR J1747-2958 to a different class of neutron star. We also argue that the adjacent supernova remnant G359.1-0.5 is not physically associated with the Mouse system but is rather an unrelated object along the line of sight.Comment: 8 pages, 4 figures, emulateapj format. Accepted for publication in The Astrophysical Journa

    Detection of microgauss coherent magnetic fields in a galaxy five billion years ago

    Full text link
    Magnetic fields play a pivotal role in the physics of interstellar medium in galaxies, but there are few observational constraints on how they evolve across cosmic time. Spatially resolved synchrotron polarization maps at radio wavelengths reveal well-ordered large-scale magnetic fields in nearby galaxies that are believed to grow from a seed field via a dynamo effect. To directly test and characterize this theory requires magnetic field strength and geometry measurements in cosmologically distant galaxies, which are challenging to obtain due to the limited sensitivity and angular resolution of current radio telescopes. Here, we report the cleanest measurements yet of magnetic fields in a galaxy beyond the local volume, free of the systematics traditional techniques would encounter. By exploiting the scenario where the polarized radio emission from a background source is gravitationally lensed by a foreground galaxy at z = 0.439 using broadband radio polarization data, we detected coherent μ\muG magnetic fields in the lensing disk galaxy as seen 4.6 Gyrs ago, with similar strength and geometry to local volume galaxies. This is the highest redshift galaxy whose observed coherent magnetic field property is compatible with a mean-field dynamo origin.Comment: 29 pages, 5 figures (including Supplementary Information). Published in Nature Astronomy on August 28, 201

    A search for the radio counterpart of the unidentified gamma-ray source 3EG J1410-6147

    Full text link
    We have made radio continuum, HI and X-ray observations in the direction of the unidentified EGRET source 3EG J1410-6147, using the Australia Telescope Compact Array and the Chandra X-ray Observatory. The observations encompass the supernova remnant (SNR) G312.4-0.4 and the two young pulsars PSRs J1412-6145 and J1413-6141. We derive a lower distance limit of 6 kpc to the SNR, although interpretation of positive velocity features in the HI spectrum may imply the SNR is more distant than 14 kpc. PSR J1412-6145, with an age of 50 kyr, is the pulsar most likely associated with SNR G312.4-0.4. X-rays are not detected from either pulsar and diffuse X-ray emission near the bright western edge of the SNR is weak. Although there is circumstantial evidence that this western region is a pulsar wind nebula (PWN), the embedded pulsar PSR J1412-6145 is apparently not sufficiently powerful to explain the radio enhancement. The origin of the electron acceleration in this region and of the gamma-rays remain unidentified, unless the distance to PSR J1413-6141 is at least a factor of 3 lower than its dispersion measure distance.Comment: 10 pages, plus 5 jpeg figures, MNRAS, in press. Full postscript or pdf including all figures is available at http://www.ast.cam.ac.uk/~m

    Time Variability in the X-ray Nebula Powered by Pulsar B1509-58

    Full text link
    We use new and archival Chandra and ROSAT data to study the time variability of the X-ray emission from the pulsar wind nebula (PWN) powered by PSR B1509-58 on timescales of one week to twelve years. There is variability in the size, number, and brightness of compact knots appearing within 20" of the pulsar, with at least one knot showing a possible outflow velocity of ~0.6c (assuming a distance to the source of 5.2 kpc). The transient nature of these knots may indicate that they are produced by turbulence in the flows surrounding the pulsar. A previously identified prominent jet extending 12 pc to the southeast of the pulsar increased in brightness by 30% over 9 years; apparent outflow of material along this jet is observed with a velocity of ~0.5c. However, outflow alone cannot account for the changes in the jet on such short timescales. Magnetohydrodynamic sausage or kink instabilities are feasible explanations for the jet variability with timescale of ~1.3-2 years. An arc structure, located 30"-45" north of the pulsar, shows transverse structural variations and appears to have moved inward with a velocity of ~0.03c over three years. The overall structure and brightness of the diffuse PWN exterior to this arc and excluding the jet has remained the same over the twelve year span. The photon indices of the diffuse PWN and possibly the jet steepen with increasing radius, likely indicating synchrotron cooling at X-ray energies.Comment: accepted to ApJ, 14 pages, 8 figure

    The 69 ms Radio Pulsar Near the Supernova Remnant RCW 103

    Get PDF
    We report the detection of the radio pulsar counterpart to the 69 ms X-ray pulsar discovered near the supernova remnant RCW 103 (G332.4-0.4). Our detection confirms that the pulsations arise from a rotation-powered neutron star, which we name PSR J1617-5055. The observed barycentric period derivative confirms that the pulsar has a characteristic age of only 8 kyr, the sixth smallest of all known pulsars. The unusual apparent youth of the pulsar and its proximity to a young remnant requires that an association be considered. Although the respective ages and distances are consistent within substantial uncertainties, the large inferred pulsar transverse velocity is difficult to explain given the observed pulsar velocity distribution, the absence of evidence for a pulsar wind nebula, and the symmetry of the remnant. Rather, we argue that the objects are likely superposed on the sky; this is reasonable given the complex area. Without an association, the question of where is the supernova remnant left behind following the birth of PSR J1617-5055 remains open. We also discuss a possible association between PSR J1617-5055 and the gamma-ray source 2CG 333+01. Though an association is energetically plausible, it is unlikely given that EGRET did not detect 2CG 333+01.Comment: 18 pages, 2 encapsulated Postscript figures, uses AAS LaTeX style files. Accepted for publication in The Astrophysical Journal Letter

    Polarization Gradient Study of Interstellar Medium Turbulence Using The Canadian Galactic Plane Survey

    Full text link
    We have investigated the magneto-ionic turbulence in the interstellar medium through spatial gradients of the complex radio polarization vector in the Canadian Galactic Plane Survey (CGPS). The CGPS data cover 1300 square-degrees, over the range 53∘≤ℓ≤192∘{53^{\circ}}\leq{\ell}\leq{192^{\circ}}, −3∘≤b≤5∘{-3^{\circ}}\leq{b}\leq{5^{\circ}} with an extension to b=17.5∘{b}={17.5^{\circ}} in the range 101∘≤ℓ≤116∘{101^{\circ}}\leq{\ell}\leq{116^{\circ}}, and arcminute resolution at 1420 MHz. Previous studies found a correlation between the skewness and kurtosis of the polarization gradient and the Mach number of the turbulence, or assumed this correlation to deduce the Mach number of an observed turbulent region. We present polarization gradient images of the entire CGPS dataset, and analyze the dependence of these images on angular resolution. The polarization gradients are filamentary, and the length of these filaments is largest towards the Galactic anti-center, and smallest towards the inner Galaxy. This may imply that small-scale turbulence is stronger in the inner Galaxy, or that we observe more distant features at low Galactic longitudes. For every resolution studied, the skewness of the polarization gradient is influenced by the edges of bright polarization gradient regions, which are not related to the turbulence revealed by the polarization gradients. We also find that the skewness of the polarization gradient is sensitive to the size of the box used to calculate the skewness, but insensitive to Galactic longitude, implying that the skewness only probes the number and magnitude of the inhomogeneities within the box. We conclude that the skewness and kurtosis of the polarization gradient are not ideal statistics for probing natural magneto-ionic turbulence.Comment: 21 pages, 15 figures, accepted by Ap
    • …
    corecore