144 research outputs found
Genomic Profiling of Messenger RNAs and MicroRNAs Reveals Potential Mechanisms of TWEAK-Induced Skeletal Muscle Wasting in Mice
Skeletal muscle wasting is a devastating complication of several physiological and pathophysiological conditions. Inflammatory cytokines play an important role in the loss of skeletal muscle mass in various chronic diseases. We have recently reported that proinflammatory cytokine TWEAK is a major muscle-wasting cytokine. Emerging evidence suggests that gene expression is regulated not only at transcriptional level but also at post-transcriptional level through the expression of specific non-coding microRNAs (miRs) which can affect the stability and/or translation of target mRNA. However, the role of miRs in skeletal muscle wasting is unknown.To understand the mechanism of action of TWEAK in skeletal muscle, we performed mRNA and miRs expression profile of control and TWEAK-treated myotubes. TWEAK increased the expression of a number of genes involved in inflammatory response and fibrosis and reduced the expression of few cytoskeletal gene (e.g. Myh4, Ankrd2, and TCap) and metabolic enzymes (e.g. Pgam2). Low density miR array demonstrated that TWEAK inhibits the expression of several miRs including muscle-specific miR-1-1, miR-1-2, miR-133a, miR-133b and miR-206. The expression of a few miRs including miR-146a and miR-455 was found to be significantly increased in response to TWEAK treatment. Ingenuity pathway analysis showed that several genes affected by TWEAK are known/putative targets of miRs. Our cDNA microarray data are consistent with miRs profiling. The levels of specific mRNAs and miRs were also found to be similarly regulated in atrophying skeletal muscle of transgenic mice (Tg) mice expressing TWEAK.Our results suggest that TWEAK affects the expression of several genes and microRNAs involved in inflammatory response, fibrosis, extracellular matrix remodeling, and proteolytic degradation which might be responsible for TWEAK-induced skeletal muscle loss
Sistema de Información Web para la Gestión de Ventas, Inventario y Nómina de la empresa M&M Comunicaciones, Jinotega 2019.
En el presente proyecto se propuso el desarrollo de un sistema de información web para la gestión de ventas, stock y nomina en M&M Comunicaciones con el objetivo de solucionar los problemas expuestos anteriormente, de esta manera se mejorará la atención al cliente y los empleados tendrán un mejor medio de trabajo puesto que el sistema les permite fácil acceso a la información que necesiten y la reducción a la carga de trabajo
Evaluation of the spectroscopic performance of the integrated multi-channel charge-sensitive preamplifier of TRACE with a silicon detector prototype
In this work the experimental results are presented showing the spectroscopic performance of the ASIC multichannel charge-sensitive preamplifier of TRACE (TRacking Array for light Charged particle Ejectiles). The results were obtained connecting a silicon pad detector to a custom-designed preamplifier board with eight ASIC CSPs. The detector and the board were put in a vacuum chamber with a triple Am-Cm-Pu alpha source. The output signals were digitized with four FPGApowered 100 MHz 14-bit resolution digitizer cards. The energy resolution obtained is around 22 keV at 5486 keV. The results are very encouraging and pave the way for future developments
Rule reactivation and capture errors in goal directed behaviour.
In everyday life people may act automatically, following "unwanted" lines of action which are triggered by contextual cues and may interfere with current goals. Such occurrences are known as "capture errors" in reference to errors that occur when a more salient behaviour takes place when a similar, but less salient, action was intended. Clinical neuropsychological studies suggest that reactivation of previous rules may play an important role in behavioural interference, but such reactivation has been little studied in normal subjects and simple experimental tasks. In the present study we develop this theme, presenting data on 4 subjects who spontaneously showed capture errors in verbal fluency tasks, and developing a new experimental paradigm specifically designed to elicit such interference in normal subjects. In the new paradigm, 101 normal subjects performed a simple series of working memory tasks, including occasional stimuli whose answer matched both the current and the previous rule. We found that normal controls indeed tend to commit more mistakes after the presentation of a stimulus whose answer is consistent with a current and preceding rule. In this case, however, the errors produced are not necessarily associated with a shift back to the old rule, suggesting that rule reactivation leads to a more general interference effect. We discuss the importance of our data from both theoretical and clinical perspectives.This work was supported by Medical Research Council (UK) intramural program [grant number MC-A060-5PQ10], CONICYT/FONDECYT Regular [grant number 1170010], PICT [grant number 2012-0412], PICT [grant number 2012-1309], CONICET, CONICYT/FONDAP [grant number 15150012]; and the INECO Foundation
Identification of high-spin proton configurations in Ba 136 and Ba 137
19 pags., 11 figs., 3 tabs.The high-spin structures of Ba136 and Ba137 are investigated after multinucleon-transfer (MNT) and fusion-evaporation reactions. Ba136 is populated in a Xe136+U238 MNT reaction employing the high-resolution Advanced GAmma Tracking Array (AGATA) coupled to the magnetic spectrometer PRISMA at the Laboratori Nazionali di Legnaro, Italy, and in two Be9+Te130 fusion-evaporation reactions using the High-efficiency Observatory for γ-Ray Unique Spectroscopy (HORUS) at the FN tandem accelerator of the University of Cologne, Germany. Furthermore, both isotopes are populated in an elusive reaction channel in the B11+Te130 fusion-evaporation reaction utilizing the HORUS γ-ray array. The level scheme above the Jπ=10+ isomer in Ba136 is revised and extended up to an excitation energy of approximately 5.5 MeV. From the results of angular-correlation measurements, the Ex=3707- and Ex=4920-keV states are identified as the bandheads of positive- and negative-parity cascades. While the high-spin regimes of both Te132 and Xe134 are characterized by high-energy 12+→10+ transitions, the Ba136E2 ground-state band is interrupted by negative-parity states only a few hundred keV above the Jπ=10+ isomer. Furthermore, spins are established for several hitherto unassigned high-spin states in Ba137. The new results close a gap along the high-spin structure of N<82 Ba isotopes. Experimental results are compared to large-scale shell-model calculations employing the GCN50:82, Realistic SM, PQM130, and SN100PN interactions. The calculations suggest that the bandheads of the positive-parity bands in both isotopes are predominantly of proton character.Furthermore, we express our
thanks to Dr. E. Teruya and Dr. N. Yoshinaga from Saitama
University, Japan, for providing the results of their shellmodel calculation with the PQM130 interaction. The research
leading to these results has received funding from the German BMBF under Contracts No. 05P15PKFN9 TP1 and
No. 05P18PKFN9 TP1, from the European Union Seventh
Framework Programme FP7/2007-2013 under Grant Agreement No. 262010 - ENSAR, from the Spanish Ministerio de
Ciencia e Innovación under Contract No. FPA2011-29854-
C04, from the Spanish Ministerio de Economía y Competitividad under Contract No. FPA2014-57196-C5, and from
the UK Science and Technology Facilities Council (STFC).
L.K. and A.V. thank the Bonn-Cologne Graduate School of
Physics and Astronomy (BCGS) for financial support. One of
the authors (A. Gadea) has been supported by the Generalitat
Valenciana, Spain, under Grant No. PROMETEOII/2014/019,
and EU under the FEDER program
Shape evolution in the neutron-rich osmium isotopes:Prompt γ-ray spectroscopy of Os 196
The shape transition in the neutron-rich Os isotopes is studied by investigating the neutron-rich 196Os nucleus through in-beam γ-ray spectroscopy using a two-proton transfer reaction from a 198Pt target to a 82Se beam. The beam-like recoils were detected and identified with the large-acceptance magnetic spectrometer PRISMA, and the coincident γ rays were measured with the advanced gamma tracking array (AGATA) demonstrator. The de-excitation of the low-lying levels of the yrast-band of 196Os were identified for the first time. The results are compared with state-of-the-art beyond-mean-field calculations, performed for the even-even 188-198Os isotopes. The new results suggest a smooth transition in the Os isotopes from a more axial rotational behavior towards predominately vibrational nuclei through triaxial configurations. An almost perfect γ-unstable/triaxial rotor yrast band is predicted for 196Os which is in agreement with the experimentally measured excited state
High-spin structures in Xe 132 and Xe 133 and evidence for isomers along the N=79 isotones
The transitional nuclei Xe132 and Xe133 are investigated after multinucleon-transfer (MNT) and fusion-evaporation reactions. Both nuclei are populated (i) in Xe136+Pb208 MNT reactions employing the high-resolution Advanced GAmma Tracking Array (AGATA) coupled to the magnetic spectrometer PRISMA, (ii) in the Xe136+Pt198 MNT reaction employing the GAMMASPHERE spectrometer in combination with the gas-detector array CHICO, and (iii) as an evaporation residue after a Te130(α,xn)Xe134-xn fusion-evaporation reaction employing the HORUS γ-ray array at the University of Cologne. The high-spin level schemes are considerably extended above the Jπ=(7-) and (10+) isomers in Xe132 and above the 11/2- isomer in Xe133. The results are compared to the high-spin systematics of the Z=54 as well as the N=78 and N=79 chains. Furthermore, evidence is found for a long-lived (T1/2â‰1μs) isomer in Xe133 which closes a gap along the N=79 isotones. Shell-model calculations employing the SN100PN and PQM130 effective interactions reproduce the experimental findings and provide guidance to the interpretation of the observed high-spin features
- …