33 research outputs found

    LITHOTHAMNION SPECIES (HAPALIDIALES, RHODOPHYTA) IN THE ARCTIC AND SUBARCTIC: PROVIDING A SYSTEMATICS FOUNDATION IN A TIME OF RAPID CLIMATE CHANGE

    Get PDF
    International audienceCoralline red algae in the genera Clathromorphum, Phymatolithon and Lithothamnion are important benthic ecosystem engineers in the photic zone of the Arctic and Subarctic. In these regions, the systematics and biogeography of Clathromorphum and Phymatolithon species have mostly been resolved whereas Lithothamnion species have not. Seventy-three specific and infraspecific names have been given to Arctic and Subarctic Lithothamnion specimens, the vast majority by Mikael H. Foslie in the late 19th and early 20th century. From the type specimens of 38 of these names, partial rbcL sequences were obtained that enabled us to correctly apply the earliest available names and to correctly place the remainder in synonymy. Three of the four Arctic and Subarctic Lithothamnion species, L. lemoineae, L. soriferum and L. tophiforme were distinct based on all three sequenced genes, two plastid encoded, rbcL and psbA, and the mitochondrial encoded COI-5P; rbcL and COI-5P also segregated L. glaciale from L. tophiforme but psbA did not. Based on DNA sequences, morpho-anatomy and biogeography, we recognize all four species. It is difficult to identify these species based on morpho-anatomy and they can all occur as encrusting corallines, as rhodoliths or as maerl. We demonstrate the importance of sequencing these historical type specimens by showing that the recently proposed northeast Atlantic L. erinaceum is a synonym of one of the earliest published Arctic species of Lithothamnion, L. soriferum, itself incorrectly placed in synonymy under L. tophiforme based on morpho-anatomy. Based on sequenced specimens, we update the distributions and ecology of these species.

    Lithothamnion (Hapalidiales, Rhodophyta) in the changing Arctic and Subarctic: DNA sequencing of type and recent specimens provides a systematics foundation*

    Get PDF
    Coralline red algae in the non-geniculate genera Clathromorphum, Phymatolithon and Lithothamnion are important benthic ecosystem engineers in the photic zone of the Arctic and Subarctic. In these regions, the systematics and biogeography of Clathromorphum and Phymatolithon have mostly been resolved whereas Lithothamnion has not, until now. Seventy-three specific and infraspecific names were given to Arctic and Subarctic Lithothamnion specimens in the late 19th and early 20th century by Frans R. Kjellman and Mikael H. Foslie. DNA sequences from 36 type specimens, five historical specimens, and an extensive sampling of recent collections resulted in the recognition of four Arctic and Subarctic Lithothamnion species, L. glaciale, L. lemoineae, L. soriferum and L. tophiforme. Three genes were sequenced, two plastid-encoded, rbcL and psbA, and the mitochondrial encoded COI-5P; rbcL and COI-5P segregated L. glaciale from L. tophiforme but psbA did not. Partial rbcL sequences obtained from type collections enabled us to correctly apply the earliest available names and to correctly place the remainder in synonymy. We were unable to sequence another 22 type specimens, but all of these are more recent names than those that are now applied. It is difficult to identify these species solely on morpho-anatomy as they can all occur as encrusting corallines or as maerl (rhodoliths). We demonstrate the importance of sequencing historical type specimens by showing that the recently proposed North-east Atlantic L. erinaceum is a synonym of one of the earliest published Arctic species of Lithothamnion, L. soriferum, itself incorrectly placed in synonymy under L. tophiforme based on morpho-anatomy. Based on sequenced specimens, we update the distributions and ecology of these species

    Frequent epigenetic inactivation of Wnt antagonist genes in breast cancer

    Get PDF
    Although mutation of APC or CTNNB1 (β-catenin) is rare in breast cancer, activation of Wnt signalling is nonetheless thought to play an important role in breast tumorigenesis, and epigenetic silencing of Wnt antagonist genes, including the secreted frizzled-related protein (SFRP) and Dickkopf (DKK) families, has been observed in various tumours. In breast cancer, frequent methylation and silencing of SFRP1 was recently documented; however, altered expression of other Wnt antagonist genes is largely unknown. In the present study, we found frequent methylation of SFRP family genes in breast cancer cell lines (SFRP1, 7 out of 11, 64%; SFRP2, 11 out of 11, 100%; SFRP5, 10 out of 11, 91%) and primary breast tumours (SFRP1, 31 out of 78, 40%; SFRP2, 60 out of 78, 77%; SFRP5, 55 out of 78, 71%). We also observed methylation of DKK1, although less frequently, in cell lines (3 out of 11, 27%) and primary tumours (15 out of 78, 19%). Breast cancer cell lines express various Wnt ligands, and overexpression of SFRPs inhibited cancer cell growth. In addition, overexpression of a β-catenin mutant and depletion of SFRP1 using small interfering RNA synergistically upregulated transcriptional activity of T-cell factor/lymphocyte enhancer factor. Our results confirm the frequent methylation and silencing of Wnt antagonist genes in breast cancer, and suggest that their loss of function contributes to activation of Wnt signalling in breast carcinogenesis

    Assessment of interactions between 205 breast cancer susceptibility loci and 13 established risk factors in relation to breast cancer risk, in the Breast Cancer Association Consortium.

    Get PDF
    BACKGROUND: Previous gene-environment interaction studies of breast cancer risk have provided sparse evidence of interactions. Using the largest available dataset to date, we performed a comprehensive assessment of potential effect modification of 205 common susceptibility variants by 13 established breast cancer risk factors, including replication of previously reported interactions. METHODS: Analyses were performed using 28 176 cases and 32 209 controls genotyped with iCOGS array and 44 109 cases and 48 145 controls genotyped using OncoArray from the Breast Cancer Association Consortium (BCAC). Gene-environment interactions were assessed using unconditional logistic regression and likelihood ratio tests for breast cancer risk overall and by estrogen-receptor (ER) status. Bayesian false discovery probability was used to assess the noteworthiness of the meta-analysed array-specific interactions. RESULTS: Noteworthy evidence of interaction at ≤1% prior probability was observed for three single nucleotide polymorphism (SNP)-risk factor pairs. SNP rs4442975 was associated with a greater reduction of risk of ER-positive breast cancer [odds ratio (OR)int = 0.85 (0.78-0.93), Pint = 2.8 x 10-4] and overall breast cancer [ORint = 0.85 (0.78-0.92), Pint = 7.4 x 10-5) in current users of estrogen-progesterone therapy compared with non-users. This finding was supported by replication using OncoArray data of the previously reported interaction between rs13387042 (r2 = 0.93 with rs4442975) and current estrogen-progesterone therapy for overall disease (Pint = 0.004). The two other interactions suggested stronger associations between SNP rs6596100 and ER-negative breast cancer with increasing parity and younger age at first birth. CONCLUSIONS: Overall, our study does not suggest strong effect modification of common breast cancer susceptibility variants by established risk factors

    From Sea to Sea: Canada's Three Oceans of Biodiversity

    Get PDF
    Evaluating and understanding biodiversity in marine ecosystems are both necessary and challenging for conservation. This paper compiles and summarizes current knowledge of the diversity of marine taxa in Canada's three oceans while recognizing that this compilation is incomplete and will change in the future. That Canada has the longest coastline in the world and incorporates distinctly different biogeographic provinces and ecoregions (e.g., temperate through ice-covered areas) constrains this analysis. The taxonomic groups presented here include microbes, phytoplankton, macroalgae, zooplankton, benthic infauna, fishes, and marine mammals. The minimum number of species or taxa compiled here is 15,988 for the three Canadian oceans. However, this number clearly underestimates in several ways the total number of taxa present. First, there are significant gaps in the published literature. Second, the diversity of many habitats has not been compiled for all taxonomic groups (e.g., intertidal rocky shores, deep sea), and data compilations are based on short-term, directed research programs or longer-term monitoring activities with limited spatial resolution. Third, the biodiversity of large organisms is well known, but this is not true of smaller organisms. Finally, the greatest constraint on this summary is the willingness and capacity of those who collected the data to make it available to those interested in biodiversity meta-analyses. Confirmation of identities and intercomparison of studies are also constrained by the disturbing rate of decline in the number of taxonomists and systematists specializing on marine taxa in Canada. This decline is mostly the result of retirements of current specialists and to a lack of training and employment opportunities for new ones. Considering the difficulties encountered in compiling an overview of biogeographic data and the diversity of species or taxa in Canada's three oceans, this synthesis is intended to serve as a biodiversity baseline for a new program on marine biodiversity, the Canadian Healthy Ocean Network. A major effort needs to be undertaken to establish a complete baseline of Canadian marine biodiversity of all taxonomic groups, especially if we are to understand and conserve this part of Canada's natural heritage

    Key steps for effective breast cancer prevention

    Get PDF

    Non-Viral Gene Delivery to Hepatocellular Carcinoma via Intra-Arterial Injection

    No full text
    Hannah J Vaughan,1,2 Camila G Zamboni,1,2 Kathryn M Luly,1,2 Ling Li,3 Kathleen L Gabrielson,4 Laboni F Hassan,1,2 Nicholas P Radant,1,2 Pranshu Bhardwaj,1,2 Florin M Selaru,3 Martin G Pomper,1,5,6 Jordan J Green1,2,6,7 1Department of Biomedical Engineering and the Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; 2Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; 3Division of Gastroenterology and Hepatology, Department of Medicine and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA; 4Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; 5Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA; 6Department of Materials Science and Engineering and the Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; 7Departments of Neurosurgery, Oncology, Ophthalmology, and Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USACorrespondence: Jordan J Green, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 400 N Broadway, Smith 5017, Baltimore, MD, 21231, USA, Tel +1 410 614-9113, Email [email protected]: Hepatocellular carcinoma (HCC) has limited treatment options, and modest survival after systemic chemotherapy or procedures such as transarterial chemoembolization (TACE). There is therefore a need to develop targeted therapies to address HCC. Gene therapies hold immense promise in treating a variety of diseases, including HCC, though delivery remains a critical hurdle. This study investigated a new approach of local delivery of polymeric nanoparticles (NPs) via intra-arterial injection for targeted local gene delivery to HCC tumors in an orthotopic rat liver tumor model.Methods: Poly(beta-amino ester) (PBAE) nanoparticles were formulated and assessed for GFP transfection in N1-S1 rat HCC cells in vitro. Optimized PBAE NPs were next administered to rats via intra-arterial injection with and without orthotopic HCC tumors, and both biodistribution and transfection were assessed.Results: In vitro transfection of PBAE NPs led to > 50% transfected cells in adherent and suspension culture at a variety of doses and weight ratios. Administration of NPs via intra-arterial or intravenous injection demonstrated no transfection of healthy liver, while intra-arterial NP injection led to transfection of tumors in an orthotopic rat HCC model.Conclusion: Hepatic artery injection is a promising delivery approach for PBAE NPs and demonstrates increased targeted transfection of HCC tumors compared to intravenous administration, and offers a potential alternative to standard chemotherapies and TACE. This work demonstrates proof of concept for administration of polymeric PBAE nanoparticles via intra-arterial injection for gene delivery in rats.Keywords: nanoparticle, gene therapy, liver cancer, poly(beta-amino ester), targete
    corecore